Genetic differences of dengue virus 2 in patients with distinct clinical outcome

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
MARQUES, Beatriz de Carvalho
SACCHETTO, Livia
BANHO, Cecilia Artico
ESTOFOLETE, Cassia Fernanda
DOURADO, Fernanda Simoes
CANDIDO, Darlan da Silva
DUTRA, Karina Rocha
Citação
BRAZILIAN JOURNAL OF MICROBIOLOGY, v.54, n.3, p.1411-1419, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The genetic diversity of the dengue virus is characterized by four circulating serotypes, several genotypes, and an increasing number of existing lineages that may have differences in the potential to cause epidemics and disease severity. Accurate identification of the genetic variability of the virus is essential to identify lineages responsible for an epidemic and understanding the processes of virus spread and virulence. Here, we characterize, using portable nanopore genomic sequencing, different lineages of dengue virus 2 (DENV-2) detected in 22 serum samples from patients with and without dengue warning signs attended at Hospital de Base of Sao Jose do Rio Preto (SJRP) in 2019, during a DENV-2 outbreak. Demographic, epidemiological, and clinical data were also analyzed. The phylogenetic reconstruction and the clinical data showed that two lineages belonging to the American/Asian genotype of DENV-2-BR3 and BR4 (BR4L1 and BR4L2)-were co-circulating in SJRP. Although preliminary, these results indicate no specific association between clinical form and phylogenetic clustering at the virus consensus sequence level. Studies with larger sample sizes and which explore single nucleotide variants are needed. Therefore, we showed that portable nanopore genome sequencing could generate quick and reliable sequences for genomic surveillance to monitor viral diversity and its association with disease severity as an epidemic unfolds.
Palavras-chave
Genomic surveillance, Epidemic, DENV-2, Dengue severity, Sequencing, Brazil
Referências
  1. Bhatt P, 2021, CURR MICROBIOL, V78, P17, DOI 10.1007/s00284-020-02284-w
  2. Bhatt S, 2013, NATURE, V496, P504, DOI 10.1038/nature12060
  3. Carneiro AR, 2012, MEM I OSWALDO CRUZ, V107, P805, DOI 10.1590/S0074-02762012000600016
  4. Chen RB, 2011, VIRUSES-BASEL, V3, P1562, DOI 10.3390/v3091562
  5. Chiaravalloti NF., 1997, DESCRIPTION AEDES AE
  6. Chin-inmanu K, 2023, ASIAN PAC J ALLERGY, V41, P361, DOI [10.12932/ap-230620-0887, 10.12932/AP-230620-0887]
  7. Cidade Brasil, 2021, MUN SAO JOS RIO PRET
  8. Das Manandhar K, 2021, AM J TROP MED HYG, V104, P115, DOI 10.4269/ajtmh.20-0163
  9. de Bruycker-Nogueira F, 2016, INFECT GENET EVOL, V45, P454, DOI 10.1016/j.meegid.2016.09.025
  10. de Jesus JG, 2020, MEM I OSWALDO CRUZ, V115, DOI 10.1590/0074-02760190423
  11. Drumond BP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059422
  12. Faria NR, 2018, SCIENCE, V361, P894, DOI 10.1126/science.aat7115
  13. Faria NR, 2017, NATURE, V546, P406, DOI 10.1038/nature22401
  14. Fonseca V, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007231
  15. Nunes PCG, 2016, J MED VIROL, V88, P1130, DOI 10.1002/jmv.24464
  16. Hill SC, 2020, PLOS PATHOG, V16, DOI 10.1371/journal.ppat.1008699
  17. Hill SC, 2019, EMERG INFECT DIS, V25, P784, DOI 10.3201/eid2504.180958
  18. Instituto Brasileiro de Geografia e Estatistica, 2022, SAO JOS RIO PRET
  19. Johnson BW, 2005, J CLIN MICROBIOL, V43, P4977, DOI 10.1128/JCM.43.10.4977-4983.2005
  20. Kurane Ichiro, 2011, Trop Med Health, V39, P45, DOI 10.2149/tmh.2011-S09
  21. Larsson A, 2014, BIOINFORMATICS, V30, P3276, DOI 10.1093/bioinformatics/btu531
  22. Li H, 2009, BIOINFORMATICS, V25, P1094, DOI [10.1093/bioinformatics/btp100, 10.1093/bioinformatics/btp324]
  23. Lindenbach BD, 2013, FIELDS VIROLOGY, P712
  24. Loman NJ, 2015, NAT METHODS, V12, P733, DOI [10.1038/NMETH.3444, 10.1038/nmeth.3444]
  25. Mir Daiana, 2014, PLoS One, V9, pe98519, DOI 10.1371/journal.pone.0098519
  26. Modhiran N, 2015, SCI TRANSL MED, V7, DOI 10.1126/scitranslmed.aaa3863
  27. Mondini A, 2009, PLOS NEGLECT TROP D, V3, DOI 10.1371/journal.pntd.0000448
  28. Nunes MRT, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0002769
  29. Oliveira MF, 2010, EMERG INFECT DIS, V16, P576, DOI 10.3201/eid1603.090996
  30. Patro ARK, 2019, VIRUSES-BASEL, V11, DOI 10.3390/v11010034
  31. Quick J, 2017, NAT PROTOC, V12, P1261, DOI 10.1038/nprot.2017.066
  32. Rocco IM, 2012, REV INST MED TROP SP, V54, P49, DOI 10.1590/S0036-46652012000100009
  33. Rocha BAM, 2017, INFECT DIS POVERTY, V6, DOI 10.1186/s40249-017-0328-9
  34. Sagulenko P, 2018, VIRUS EVOL, V4, DOI 10.1093/ve/vex042
  35. Secretaria da Saude-Governo do Estado de Sao Paulo, 2019, DISTR CAS DENG NOT C
  36. Secretaria de Saude Prefeitura de Sao Jose do Rio Preto, B DENG
  37. Secretaria de Vigilancia em Saude-Ministerio da Saude, 2020, MON CAS ARB URB TRAN
  38. Srikiatkhachorn A, 2011, CLIN INFECT DIS, V53, P563, DOI 10.1093/cid/cir451
  39. Tian HY, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005694
  40. Trifinopoulos J, 2016, NUCLEIC ACIDS RES, V44, pW232, DOI 10.1093/nar/gkw256
  41. Vicente CR, 2016, BMC INFECT DIS, V16, DOI 10.1186/s12879-016-1668-y
  42. Weaver SC, 2009, INFECT GENET EVOL, V9, P523, DOI 10.1016/j.meegid.2009.02.003
  43. Wick RR, 2019, GENOME BIOL, V20, DOI 10.1186/s13059-019-1727-y
  44. Williams M, 2014, AM J TROP MED HYG, V91, P611, DOI 10.4269/ajtmh.13-0600
  45. World Health Organization, 2021, DENG GUID DIAGN TREA
  46. World Health Organization, 2021, GLOB STRAT DENG PREV
  47. Yenamandra SP, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-92783-y