Homozygous <i>CDH2</i> variant may be associated with hypopituitarism without neurological disorders

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOSCIENTIFICA LTD
Autores
MADEIRA, Joao L. O.
GERGICS, Peter
MARQUES, Juliana M.
BENEDETTI, Anna Flavia Figueredo
Citação
ENDOCRINE CONNECTIONS, v.12, n.8, article ID e220473, 12p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Context: Congenital hypopituitarism is a genetically heterogeneous condition. Whole exome sequencing (WES) is a promising approach for molecular diagnosis of patients with this condition. Objectives: The aim of this study is to conduct WES in a patient with congenital hypopituitarism born to consanguineous parents, CDH2 screening in a cohort of patients with congenital hypopituitarism, and functional testing of a no vel CDH2 variant. Design: Genomic DNA from a proband and her consanguineous parents was analyzed by WES. Copy number variants were evaluated. The genetic variants were filtered for population frequency (ExAC, 1000 genomes, gnomAD, and ABraOM), in silico prediction of pathogenicity, and gene expression in the pituitary and/or hypothalamus. Genomic DNA from 145 patients was screened for CDH2 by Sanger sequencing. Results: One female patient with deficiencies in growth hormone, thyroid-stimulating hormone, adrenocorticotropic hormone, luteinizing hormone, and follicle-stimulating hormone and ectopic posterior pituitary gland contained a rare homozygous c.865G>A (p.Val289Ile) variant in CDH2. To determine whether the p.Val289Ile variant in CDH2 affects cell adhesion properties, we stably transfected L1 fibroblast lines, labeled the cells with lipophilic dyes, and quantified aggregation. Large aggregates formed in cells expressing wildtype CDH2, but aggregation was impaired in cells transfected with variant CDH2 or non-transfected. Conclusion: A homozygous CDH2 allelic variant was found in one hypopituitarism patient, and the variant impaired cell aggregation function in vitro. No disease-causing variants were found in 145 other patients screened for CDH2 variants. Thus, CDH2 is a candidate gene for hypopituitarism that needs to be tested in different populations.
Palavras-chave
whole exome sequencing, cell adhesion, growth insufficiency, CDH2
Referências
  1. Accogli A, 2019, AM J HUM GENET, V105, P854, DOI 10.1016/j.ajhg.2019.09.005
  2. Aiga M, 2011, J BIOL CHEM, V286, P851, DOI 10.1074/jbc.M110.176305
  3. Arnsdorf EJ, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005388
  4. Brinkmeier ML, 2009, GENOMICS, V93, P449, DOI 10.1016/j.ygeno.2008.11.010
  5. Chalasani K, 2011, MOL BIOL CELL, V22, P1505, DOI 10.1091/mbc.E10-08-0675
  6. Chambers TJG, 2013, ENDOCR-RELAT CANCER, V20, pR101, DOI 10.1530/ERC-13-0005
  7. Davis SW, 2013, CURR TOP DEV BIOL, V106, P1, DOI 10.1016/B978-0-12-416021-7.00001-8
  8. De Pascalis C, 2017, MOL BIOL CELL, V28, P1833, DOI 10.1091/mbc.E17-03-0134
  9. De Rienzo F, 2015, CLIN ENDOCRINOL, V83, P849, DOI 10.1111/cen.12849
  10. DePristo MA, 2011, NAT GENET, V43, P491, DOI 10.1038/ng.806
  11. Duguay D, 2003, DEV BIOL, V253, P309, DOI 10.1016/S0012-1606(02)00016-7
  12. Fang Q, 2016, ENDOCR REV, V37, P636, DOI 10.1210/er.2016-1101
  13. Guo HB, 2009, J BIOL CHEM, V284, P34986, DOI 10.1074/jbc.M109.060806
  14. Halperin D, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-26426-1
  15. Himes AD, 2011, MOL ENDOCRINOL, V25, P482, DOI 10.1210/me.2010-0313
  16. Himes AD, 2009, DEV BIOL, V325, P151, DOI 10.1016/j.ydbio.2008.10.010
  17. Lee E, 2016, BIOCHEM BIOPH RES CO, V478, P1640, DOI 10.1016/j.bbrc.2016.08.173
  18. Lerario AM, 2020, CLINICS, V75
  19. Li S, 2009, ONCOL REP, V21, P1223, DOI 10.3892/or_00000345
  20. MARSHALL WA, 1969, ARCH DIS CHILD, V44, P291, DOI 10.1136/adc.44.235.291
  21. MARSHALL WA, 1970, ARCH DIS CHILD, V45, P13, DOI 10.1136/adc.45.239.13
  22. Millán MIP, 2016, ELIFE, V5, DOI [10.7554/elife.14470, 10.7554/eLife.14470]
  23. MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
  24. Miyamoto Y, 2015, CELL ADHES MIGR, V9, P183, DOI 10.1080/19336918.2015.1005466
  25. Moya PR, 2013, EUR J HUM GENET, V21, P850, DOI 10.1038/ejhg.2012.245
  26. Mrozik KM, 2018, BMC CANCER, V18, DOI 10.1186/s12885-018-4845-0
  27. Naslavsky MS, 2017, HUM MUTAT, V38, P751, DOI 10.1002/humu.23220
  28. Nishigaki S, 2016, THYROID, V26, P1701, DOI 10.1089/thy.2016.0005
  29. Osmundsen AM, 2017, ENDOCRINOLOGY, V158, P3339, DOI 10.1210/en.2017-00581
  30. Otto AP, 2015, PITUITARY, V18, P561, DOI 10.1007/s11102-014-0610-9
  31. Potok MA, 2008, DEV DYNAM, V237, P1006, DOI 10.1002/dvdy.21511
  32. Qi JF, 2005, MOL BIOL CELL, V16, P4386, DOI 10.1091/mbc.E05-03-0186
  33. Quaio CRDC, 2020, AM J MED GENET C, V184, P955, DOI 10.1002/ajmg.c.31860
  34. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  35. Rubinek T, 2003, J CLIN ENDOCR METAB, V88, P3724, DOI 10.1210/jc.2003-030090
  36. Salisbury TB, 2008, MOL ENDOCRINOL, V22, P1295, DOI 10.1210/me.2007-0515
  37. Shellard A, 2021, NATURE, V600, P690, DOI 10.1038/s41586-021-04210-x
  38. Silva Raquel Azevedo, 2015, Climate change, air quality and human health: quantifying the global mortality impacts of present and future ozone and pm2.5 ambient air pollution
  39. Tachibana K, 2019, BIOCHEM BIOPH RES CO, V516, P414, DOI 10.1016/j.bbrc.2019.06.067
  40. TAKEICHI M, 1972, EXP CELL RES, V74, P51, DOI 10.1016/0014-4827(72)90480-6
  41. TAKEICHI M, 1977, J CELL BIOL, V75, P464, DOI 10.1083/jcb.75.2.464
  42. Tamura K, 1998, NEURON, V20, P1153, DOI 10.1016/S0896-6273(00)80496-1
  43. TANNER JM, 1966, ARCH DIS CHILD, V41, P454, DOI 10.1136/adc.41.219.454
  44. Theveneau E, 2013, NAT CELL BIOL, V15, P763, DOI 10.1038/ncb2772
  45. Tommiska J, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01429-z
  46. URUSHIHARA H, 1979, DEV BIOL, V70, P206, DOI 10.1016/0012-1606(79)90017-4
  47. Wang K, 2010, NUCLEIC ACIDS RES, V38, DOI 10.1093/nar/gkq603
  48. Wang T, 2015, J BIOL CHEM, V290, P8913, DOI 10.1074/jbc.M114.621003
  49. Webb EA, 2013, BRAIN, V136, P3096, DOI 10.1093/brain/awt218
  50. Xu CD, 2015, J NEUROSCI, V35, P14517, DOI 10.1523/JNEUROSCI.1266-15.2015
  51. Yamagata M, 2018, FRONT MOL NEUROSCI, V11, DOI 10.3389/fnmol.2018.00142
  52. Yang YP, 2014, JAMA-J AM MED ASSOC, V312, P1870, DOI 10.1001/jama.2014.14601
  53. Yuan XQ, 2010, J BIOL CHEM, V285, P28953, DOI 10.1074/jbc.M110.160192
  54. Zhang JN, 2013, NEURAL DEV, V8, DOI 10.1186/1749-8104-8-7
  55. Zhang JN, 2010, DEV CELL, V18, P472, DOI 10.1016/j.devcel.2009.12.025
  56. Zhu GJ, 2018, ONCOL LETT, V15, P3472, DOI 10.3892/ol.2018.7751