Global pharmacogenomics: Impact of population diversity on the distribution of polymorphisms in the CYP2C cluster among Brazilians

Carregando...
Imagem de Miniatura
Citações na Scopus
39
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
SUAREZ-KURTZ, G.
GENRO, J. P.
MORAES, M. O. de
PENA, S. D. J.
PERINI, J. A.
RIBEIRO-DOS-SANTOS, A.
ROMANO-SILVA, M. A.
SANTANA, I.
STRUCHINER, C. J.
Citação
PHARMACOGENOMICS JOURNAL, v.12, n.3, p.267-276, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The impact of biogeographical ancestry, self-reported 'race/color' and geographical origin on the frequency distribution of 10 CYP2C functional polymorphisms (CYP2C8*2, *3, *4, CYP2C9*2, *3, *5, *11, CYP2C19*2, *3 and *17) and their haplotypes was assessed in a representative cohort of the Brazilian population (n = 1034). TaqMan assays were used for allele discrimination at each CYP2C locus investigated. Individual proportions of European, African and Amerindian biogeographical ancestry were estimated using a panel of insertion-deletion polymorphisms. Multinomial log-linear models were applied to infer the statistical association between the CYP2C alleles and haplotypes (response variables), and biogeographical ancestry, self-reported Color and geographical origin (explanatory variables). The results showed that CYP2C19*3, CYP2C9*5 and CYP2C9*11 were rare alleles (<1%), the frequency of other variants ranged from 3.4% (CYP2C8*4) to 17.3% (CYP2C19*17). Two distinct haplotype blocks were identified: block 1 consists of three single nucleotide polymorphisms (SNPs) (CYP2C19*17, CYP2C19*2 and CYP2C9*2) and block 2 of six SNPs (CYP2C9*11, CYP2C9*3, CYP2C9*5, CYP2C8*2, CYP2C8*4 and CYP2C8*3). Diplotype analysis generated 41 haplotypes, of which eight had frequencies greater than 1% and together accounted for 96.4% of the overall genetic diversity. The distribution of CYP2C8 and CYP2C9 (but not CYP2C19) alleles, and of CYP2C haplotypes was significantly associated with self-reported Color and with the individual proportions of European and African genetic ancestry, irrespective of Color self-identification. The individual odds of having alleles CYP2C8*2, CYP2C8*3, CYP2C9*2 and CYP2C9*3, and haplotypes including these alleles, varied continuously as the proportion of European ancestry increased. Collectively, these data strongly suggest that the intrinsic heterogeneity of the Brazilian population must be acknowledged in the design and interpretation of pharmacogenomic studies of the CYP2C cluster in order to avoid spurious conclusions based on improper matching of study cohorts. This conclusion extends to other polymorphic pharmacogenes among Brazilians, and most likely to other admixed populations of the Americas. The Pharmacogenomics Journal (2012) 12, 267-276; doi: 10.1038/tpj.2010.89; published online 21 December 2010
Palavras-chave
Brazilians, biogeographical ancestry, CYP2C polymorphisms, human diversity, population admixture
Referências
  1. Barrett JC, 2005, BIOINFORMATICS, V21, P262
  2. Bastos-Rodrigues L, 2006, ANN HUM GENET, V70, P658, DOI 10.1111/j.1469-1809.2006.00287.x
  3. Bergmann TK, 2010, PHARMACOGENOMICS J, DOI 1038/tpj.2010.19
  4. Cavaco I, 2006, CLIN CHEM LAB MED, V44, P168, DOI 10.1515/CCLM.2006.030
  5. Damasceno A, COMMUNICATION
  6. Fox J., 2003, J STAT SOFTW, V8, P1
  7. Furuta T, 2007, PHARMACOGENOMICS, V8, P1199, DOI 10.2217/14622416.8.9.1199
  8. Garcia-Martin E, 2006, MOL DIAGN THER, V10, P29
  9. Giusti B, 2010, EXPERT OPIN DRUG MET, V6, P393, DOI 10.1517/17425251003598878
  10. Ingelman-Sundberg M, 2007, PHARMACOL THERAPEUT, V116, P496, DOI 10.1016/j.pharmthera.2007.09.004
  11. Jonas DE, 2009, TRENDS PHARMACOL SCI, V30, P375, DOI 10.1016/j.tips.2009.05.001
  12. Kerb R, 2009, LANCET INFECT DIS, V9, P760, DOI 10.1016/S1473-3099(09)70320-2
  13. Leskela S, 2011, PHARMACOGENOMICS J, V11, P121, DOI 10.1038/tpj.2010.13
  14. Limdi NA, 2010, BLOOD, V115, P3827, DOI 10.1182/blood-2009-12-255992
  15. Mega JL, 2009, NEW ENGL J MED, V360, P354, DOI 10.1056/NEJMoa0809171
  16. Oliveira E, 2009, PHARMACOGENOMICS, V10, P1413, DOI [10.2217/pgs.09.74, 10.2217/PGS.09.74]
  17. Oliveira E, 2007, PHARMACOGENOMICS, V8, P703, DOI 10.2217/14622416.8.7.703
  18. Parra FC, 2003, P NATL ACAD SCI USA, V100, P177, DOI 10.1073/pnas.0126614100
  19. Pena SD, GENOMIC ANCEST UNPUB
  20. Perini JA, 2008, CLIN PHARMACOL THER, V84, P722, DOI 10.1038/clpt.2008.166
  21. Pritchard JK, 2000, GENETICS, V155, P945
  22. R Core Development Team, 2009, LANG ENV STAT COMP
  23. Salzano FM, 2002, EVOLUTION GENETICS L
  24. Sim SC, 2006, CLIN PHARMACOL THER, V79, P103, DOI 10.1016/j.clpt.2005.10.002
  25. Sistonen J, 2009, PHARMACOGENET GENOM, V19, P170, DOI 10.1097/FPC.0b013e32831ebb30
  26. Suarez-Kurtz G, 2010, PHARMACOGENOMICS, V11, P1257, DOI [10.2217/pgs.10.89, 10.2217/PGS.10.89]
  27. Suarez-Kurtz G., 2007, PHARMACOGENOMICS ADM, P75
  28. Suarez-Kurtz G, 2006, CURR DRUG TARGETS, V7, P1649, DOI 10.2174/138945006779025392
  29. Suarez-Kurtz G, 2005, CLIN PHARMACOL THER, V77, P587, DOI 10.1016/j.clpt.2005.02.011
  30. Suarez-Kurtz G., 2008, EXP REV CLIN PHARM, V1, P337, DOI 10.1586/17512433.1.3.337
  31. Suarez-Kurtz G., 2008, CLIN PHARMACOL THER, V3, P399
  32. Sugimoto K, 2008, BRIT J CLIN PHARMACO, V65, P437, DOI 10.1111/j.1365-2125.2007.03057.x
  33. Venables W. N., 2002, MODERN APPL STAT S
  34. Vianna-Jorge R, 2004, CLIN PHARMACOL THER, V76, P18, DOI 10.1016/j.clpt.2004.03.002
  35. Yasar U, 2002, BIOCHEM BIOPH RES CO, V299, P25, DOI 10.1016/S0006-291X(02)02592-5