SUV Normalized by Skeletal Volume on F-18-Fluoride PET/CT Studies

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Citação
CLINICAL NUCLEAR MEDICINE, v.41, n.7, p.529-533, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: To propose a technique for SUV normalization on F-18-fluoride PET/CT (F-18-NaF) studies based on skeletal volume and to compare the SUVs normalized by this technique with the ones normalized by body weight. Methods: SUVs were obtained in volumes of interest (VOIs) in proximal diaphyseal regions of the right humerus (HD) and right femur (FD) in 12 selected F-18-NaF studies. The 12 studies presented both regions considered normal by visual examination on PET and CT and were performed in patients presenting body weight below 50 kg (B50) or above 90 kg (A90) (6 patients in each group). The maximum SUVs were calculated in these 2 bone regions in both groups of patients using body weight (SUV BW) and skeletal volume (SUV SV) methodologies. The total skeletal volume for each patient was estimated based on whole skeletal VOIs automatically defined on the CT component of the PET/CT study. The maximum SUVs calculated using the 2 methodologies were compared. Results: The maximum SUVs BW were statistically higher in the group A90 in both regions, with a P < 0.001 and P < 0.008 for FD and HD, respectively. The maximum SUVs SV in the 2 regions were not statistically different between the groups B50 and A90, P values of 0.27 and 0.87 for FD and HD, respectively. Conclusions: The SUVs normalized by skeletal volume present similar results in groups of patients with extremes of body weight. Therefore, this methodology could be more adequate than the one normalized by body weight to semiquantitatively analyze F-18-NaF studies.
Palavras-chave
F-18-NaF, F-18-Fluoride, PET/CT, SUV
Referências
  1. Adams MC, 2010, AM J ROENTGENOL, V195, P310, DOI 10.2214/AJR.10.4923
  2. Brenner W, 2004, J NUCL MED, V45, P1493
  3. Cook G. J., 2011, EUR J NUCL MED MOL I, V1, P1
  4. Doot RK, 2010, J NUCL MED, V51, P521, DOI 10.2967/jnumed.109.070052
  5. Etchebehere EC, 2015, J NUCL MED, V56, P1177, DOI 10.2967/jnumed.115.158626
  6. Even-Sapir E, 2006, J NUCL MED, V47, P287
  7. Even-Sapir E, 2004, J NUCL MED, V45, P272
  8. Grant FD, 2008, J NUCL MED, V49, P68, DOI 10.2967/jnumed.106.037200
  9. Hamill JJ, 2013, MED PHYS, V40, DOI 10.1118/1.4816656
  10. KIM CK, 1994, J NUCL MED, V35, P164
  11. Kim Woo Hyoung, 2012, Nuclear Medicine and Molecular Imaging, V46, P182, DOI 10.1007/s13139-012-0146-8
  12. Kruger S, 2009, EUR J NUCL MED MOL I, V36, P1807, DOI 10.1007/s00259-009-1181-2
  13. Kubota S, 2015, NUCL MED COMMUN, V36, P596, DOI 10.1097/MNM.0000000000000284
  14. Lucignani G, 2004, NUCL MED COMMUN, V25, P651, DOI 10.1097/01.mnm.0000134329.30912.49
  15. Perkins A, 2008, BRIT MED J, V337, DOI 10.1136/bmj.a1577
  16. Puri T, 2012, NUCL MED COMMUN, V33, P597, DOI 10.1097/MNM.0b013e3283512adb
  17. Rohren EM, 2015, J NUCL MED, V56, P1507, DOI 10.2967/jnumed.115.156026
  18. Thie JA, 2004, J NUCL MED, V45, P1431
  19. Wahl RL, 2009, J NUCL MED, V50, p122S, DOI 10.2967/jnumed.108.057307
  20. Waterval JJ, 2013, CLIN NUCL MED, V38, P677, DOI 10.1097/RLU.0b013e31829a013e
  21. ZASADNY KR, 1993, RADIOLOGY, V189, P847