Focal adhesion kinase governs cardiac concentric hypertrophic growth by activating the AKT and mTOR pathways

Carregando...
Imagem de Miniatura
Citações na Scopus
52
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
Autores
CLEMENTE, C. F. M. Z.
XAVIER-NETO, J.
COSTA, A. P. Dalla
CONSONNI, S. R.
ANTUNES, J. E.
ROCCO, S. A.
PEREIRA, M. B.
JUDICE, C. C.
JOAZEIRO, P. P.
Citação
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, v.52, n.2, Special Issue, p.493-501, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The heart responds to sustained overload by hypertrophic growth in which the myocytes distinctly thicken or elongate on increases in systolic or diastolic stress. Though potentially adaptive, hypertrophy itself may predispose to cardiac dysfunction in pathological settings. The mechanisms underlying the diverse morphology and outcomes of hypertrophy are uncertain. Here we used a focal adhesion kinase (FAK) cardiac-specific transgenic mice model (FAK-Tg) to explore the function of this non-receptor tyrosine kinase on the regulation of myocyte growth. FAK-Tg mice displayed a phenocopy of concentric cardiac hypertrophy, reflecting the relative thickening of the individual myocytes. Moreover, FAK-Tg mice showed structural, functional and molecular features of a compensated hypertrophic growth, and preserved responses to chronic pressure overload. Mechanistically, FAK overexpression resulted in enhanced myocardial FAK activity, which was proven by treatment with a selective FAK inhibitor to be required for the cardiac hypertrophy in this model. Our results indicate that upregulation of FAK does not affect the activity of Src/ERK1/2 pathway, but stimulated signaling by a cascade that encompasses PI3K, AKT, mTOR, S6K and rpS6. Moreover, inhibition of the mTOR complex by rapamycin extinguished the cardiac hypertrophy of the transgenic FAK mice. These findings uncover a unique role for FAK in regulating the signaling mechanisms that governs the selective myocyte growth in width, likely controlling the activity of PI3K/AKT/mTOR pathway, and suggest that FAK activation could be important for the adaptive response to increases in cardiac afterload. This article is part of a Special Issue entitled ""Local Signaling in Myocytes"".
Palavras-chave
Cardiac myocytes, Cardiac failure, Mechanotransduction, Signal transduction, Transgenic mice
Referências
  1. Bayer AL, 2002, AM J PHYSIOL-HEART C, V283, pH695, DOI 10.1152/ajpheart.00021.2002
  2. Berenji K, 2005, AM J PHYSIOL-HEART C, V289, pH8, DOI 10.1152/ajpheart.01303.2004
  3. CALALB MB, 1995, MOL CELL BIOL, V15, P954
  4. Ceci M, 2004, J MOL CELL CARDIOL, V37, P905, DOI 10.1016/j.yjmc.2004.06.020
  5. CHEN HC, 1994, P NATL ACAD SCI USA, V91, P10148, DOI 10.1073/pnas.91.21.10148
  6. Clemente CFMZ, 2007, CIRC RES, V101, P1339, DOI 10.1161/CIRCRESAHA.107.160978
  7. Condorelli G, 2002, P NATL ACAD SCI USA, V99, P12333, DOI 10.1073/pnas.172376399
  8. DeBosch B, 2006, CIRCULATION, V113, P2097, DOI 10.1161/CIRCULATIONAHA.105.595231
  9. DiMichele LA, 2006, CIRC RES, V99, P636, DOI 10.1161/01.RES.0000240498.44752.d6
  10. Eble DM, 2000, AM J PHYSIOL-HEART C, V278, pH1695
  11. Fonseca PM, 2005, CIRC RES, V96, P73, DOI 10.1161/01.RES.0000152390.99806.A5
  12. Franchini KG, 2000, CIRC RES, V87, P558
  13. Gan BY, 2006, J BIOL CHEM, V281, P37321, DOI 10.1074/jbc.M605241200
  14. Gerdes AM, 1996, HYPERTENSION, V28, P609
  15. GROSSMAN W, 1975, J CLIN INVEST, V56, P56, DOI 10.1172/JCI108079
  16. Hakim ZS, 2007, MOL CELL BIOL, V27, P5352, DOI 10.1128/MCB.00068-07
  17. Heineke J, 2006, NAT REV MOL CELL BIO, V7, P589, DOI 10.1038/nrm1983
  18. Inoki K, 2003, GENE DEV, V17, P1829, DOI 10.1101/gad.1110003
  19. Inoki K, 2003, CELL, V115, P577, DOI 10.1016/S0092-8674(03)00929-2
  20. Lois C, 2002, SCIENCE, V295, P868, DOI 10.1126/science.1067081
  21. Lopes MM, 2007, CLIN SCI, V113, P195, DOI 10.1042/CS20070036
  22. Luo J, 2005, MOL CELL BIOL, V25, P9491, DOI 10.1128/MCB.25.21.9491-9502.2005
  23. Ma XJM, 2009, NAT REV MOL CELL BIO, V10, P307, DOI 10.1038/nrm2672
  24. Manning BD, 2002, MOL CELL, V10, P151, DOI 10.1016/S1097-2765(02)00568-3
  25. Marin TM, 2008, CIRC RES, V103, P813, DOI 10.1161/CIRCRESAHA.108.179754
  26. McMullen JR, 2003, P NATL ACAD SCI USA, V100, P12355, DOI 10.1073/pnas.1934654100
  27. Oudit GY, 2004, J MOL CELL CARDIOL, V37, P449, DOI 10.1016/j.yjmcc.2004.05.015
  28. Parsons JT, 2003, J CELL SCI, V116, P1409, DOI 10.1242/jcs.00373
  29. Peng X, 2006, J CLIN INVEST, V116, P217, DOI 10.1172/JCI24497
  30. Peng X, 2008, P NATL ACAD SCI USA, V105, P6638, DOI 10.1073/pnas.0802319105
  31. RINDT H, 1993, J BIOL CHEM, V268, P5332
  32. Russell B, 2010, J MOL CELL CARDIOL, V48, P817, DOI 10.1016/j.yjmcc.2010.02.016
  33. Schlaepfer DD, 1997, J BIOL CHEM, V272, P13189, DOI 10.1074/jbc.272.20.13189
  34. Senyo SE, 2007, FEBS LETT, V581, P4241, DOI 10.1016/j.febslet.2007.07.070
  35. Shai SY, 2002, CIRC RES, V90, P458, DOI 10.1161/hh0402.105790
  36. Shioi T, 2000, EMBO J, V19, P2537, DOI 10.1093/emboj/19.11.2537
  37. Slack-Davis JK, 2007, J BIOL CHEM, V282, P14845, DOI 10.1074/jbc.M606695200
  38. Taylor JM, 2000, J BIOL CHEM, V275, P19250, DOI 10.1074/jbc.M909099199
  39. Torsoni AS, 2003, CIRC RES, V93, P140, DOI 10.1161/01.RES.0000081595.25297.1B
  40. Zhao XF, 2010, J CELL BIOL, V189, P955, DOI 10.1083/jcb.200912094