Disruption of beta3 adrenergic receptor increases susceptibility to DIO in mouse

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOSCIENTIFICA LTD
Autores
PREITE, Nailliw Z.
NASCIMENTO, Bruna P. P. do
HIGA, Talita S.
EVANGELISTA, Fabiana S.
HENRIQUES, Felipe dos Santos
BATISTA JR., Miguel Luiz
BIANCO, Antonio C.
Citação
JOURNAL OF ENDOCRINOLOGY, v.231, n.3, p.259-269, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The brown adipose tissue (BAT) mediates adaptive changes in metabolic rate by responding to the sympathetic nervous system through beta-adrenergic receptors (AR). Here, we wished to define the role played by the AR beta(3) isoform in this process. This study focused on the AR beta(3) knockout mice (AR beta 3KO), including responsiveness to cold exposure, diet-induced obesity, intolerance to glucose, dyslipidaemia and lipolysis in white adipose tissue (WAT). AR beta 3KO mice defend core temperature during cold exposure (4 degrees C for 5h), with faster BAT thermal response to norepinephrine (NE) infusion when compared with wild-type (WT) mice. Despite normal BAT thermogenesis, AR beta 3KO mice kept on a high-fat diet (HFD; 40% fat) for 8 weeks exhibited greater susceptibility to diet-induced obesity, markedly increased epididymal adipocyte area with clear signs of inflammation. The HFD-induced glucose intolerance was similar in both groups but serum hypertriglyceridemia and hypercholesterolemia were less intense in AR beta 3KO animals when compared with WT controls. Isoproterenol-induced lipolysis in isolated white adipocytes as assessed by glycerol release was significantly impaired in AR beta 3KO animals despite normal expression of key proteins involved in lipid metabolism. In conclusion, AR beta(3) inactivation does not affect BAT thermogenesis but increases susceptibility to diet-induced obesity by dampening WAT lipolytic response to adrenergic stimulation.
Palavras-chave
obesity, lipolysis, adaptive thermogenesis, brown adipose tissue, beta(3) adrenergic receptor
Referências
  1. Arch JRS, 1996, INT J OBESITY, V20, P191
  2. Asensio C, 2005, DIABETES, V54, P3490, DOI 10.2337/diabetes.54.12.3490
  3. Atgie C, 1997, AM J PHYSIOL-CELL PH, V273, pC1136
  4. Bachman ES, 2002, SCIENCE, V297, P843, DOI 10.1126/science.1073160
  5. Batista ML, 2016, J CACHEXIA SARCOPENI, V7, P37, DOI 10.1002/jcsm.12037
  6. Bianco AC, 2014, THYROID, V24, P88, DOI 10.1089/thy.2013.0109
  7. Cannon B, 2004, PHYSIOL REV, V84, P277, DOI 10.1152/physrev.00015.2003
  8. CARPENE C, 1993, J PHARMACOL EXP THER, V265, P237
  9. Chruscinski AJ, 1999, J BIOL CHEM, V274, P16694, DOI 10.1074/jbc.274.24.16694
  10. Cinti S, 2006, NUTR METAB CARDIOVAS, V16, P569, DOI 10.1016/j.numecd.2006.07.009
  11. COLLINS S, 1994, MOL ENDOCRINOL, V8, P518, DOI 10.1210/me.8.4.518
  12. Cypess AM, 2009, NEW ENGL J MED, V360, P1509, DOI 10.1056/NEJMoa0810780
  13. Enerback S, 1997, NATURE, V387, P90, DOI 10.1038/387090a0
  14. Fernandes GW, 2014, J ENDOCRINOL, V221, P381, DOI 10.1530/JOE-13-0526
  15. Fisher MH, 1998, J CLIN INVEST, V101, P2387, DOI 10.1172/JCI2496
  16. Hibi M, 2016, INT J OBESITY, V40, P1655, DOI 10.1038/ijo.2016.124
  17. Inokuma K, 2006, AM J PHYSIOL-ENDOC M, V290, pE1014, DOI 10.1152/ajpendo.00105.2005
  18. Jimenez M, 2002, FEBS LETT, V530, P37, DOI 10.1016/S0014-5793(02)03387-2
  19. Kajimura S, 2014, ANNU REV PHYSIOL, V76, P225, DOI 10.1146/annurev-physiol-021113-170252
  20. Lafontan M., 1997, Human Reproduction (Oxford), V12, P6
  21. Lee YH, 2014, BBA-MOL BASIS DIS, V1842, P358, DOI 10.1016/j.bbadis.2013.05.011
  22. Lidell ME, 2010, NAT REV ENDOCRINOL, V6, P319, DOI 10.1038/nrendo.2010.64
  23. Lowell BB, 2000, NATURE, V404, P652
  24. Lowell BB, 1998, ENDOCR J, V45, pS9, DOI 10.1507/endocrj.45.Suppl_S9
  25. Mattsson CL, 2011, AM J PHYSIOL-ENDOC M, V301, pE1108, DOI 10.1152/ajpendo.00085.2011
  26. NAGASE I, 1994, JPN J VET RES, V42, P137
  27. Revelli JP, 1997, J CLIN INVEST, V100, P1098, DOI 10.1172/JCI119620
  28. Ribeiro MO, 2001, J CLIN INVEST, V108, P97, DOI 10.1172/JCI12584
  29. RODBELL M, 1964, J BIOL CHEM, V239, P375
  30. Rohrer DK, 1998, J MOL MED-JMM, V76, P764, DOI 10.1007/s001090050278
  31. RUDERMAN NB, 1981, AM J CLIN NUTR, V34, P1617
  32. Rutkowski JM, 2015, J CELL BIOL, V208, P501, DOI 10.1083/jcb.201409063
  33. Santulli G, 2012, DIABETES, V61, P692, DOI 10.2337/db11-1027
  34. Silva J Enrique, 2011, Front Biosci (Schol Ed), V3, P352, DOI 10.2741/s156
  35. Soloveva V, 1997, MOL ENDOCRINOL, V11, P27, DOI 10.1210/me.11.1.27
  36. Sun K, 2013, CELL METAB, V18, P470, DOI 10.1016/j.cmet.2013.06.016
  37. Sun K, 2011, J CLIN INVEST, V121, P2094, DOI 10.1172/JCI45887
  38. SUSULIC VS, 1995, J BIOL CHEM, V270, P29483
  39. Ueta CB, 2012, J ENDOCRINOL, V214, P359, DOI 10.1530/JOE-12-0155
  40. van der Lans AAJJ, 2014, AM J PHYSIOL-REG I, V307, pR103, DOI 10.1152/ajpregu.00021.2014
  41. Marken L Van, 2009, NEW ENGL J MED, V360, P1500, DOI 10.1056/NEJM0A0808718
  42. WEIGLE DS, 1994, FASEB J, V8, P302
  43. WIDEN E, 1995, NEW ENGL J MED, V333, P348, DOI 10.1056/NEJM199508103330604
  44. Xiao CY, 2015, OBESITY, V23, P1450, DOI 10.1002/oby.21124
  45. Yoneshiro T, 2011, OBESITY, V19, P13, DOI 10.1038/oby.2010.105