Effects of virtual reality for stroke individuals based on the International Classification of Functioning and Health: a systematic review

Carregando...
Imagem de Miniatura
Citações na Scopus
42
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS LTD
Autores
PALMA, Gisele Carla dos Santos
FREITAS, Tatiana Beline
BONUZZI, Giordano Marcio Gatinho
SOARES, Marcos Antonio Arlindo
LEITE, Paulo Henrique Wong
MAZZINI, Natalia Araujo
ALMEIDA, Murilo Ruas Groschitz
TORRIANI-PASIN, Camila
Citação
TOPICS IN STROKE REHABILITATION, v.24, n.4, p.269-278, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: This review determines the effects of virtual reality interventions for stroke subjects based on the International Classification of Functioning, Disability, and Health (ICF) framework. Virtual reality is a promising tool for therapy for stroke rehabilitation, but the effects of virtual reality interventions on post-stroke patients based on the specific ICF domains (Body Structures, Body Functions, Activity, and Participation) have not been investigated. Method: A systematic review was conducted, including trials with adults with a clinical diagnosis of a chronic, subacute, or acute stroke. Eligible trials had to include studies with an intervention protocol and follow-up, with a focus on upper limbs and/or lower limbs and/or balance. The Physiotherapy Evidence Database (PEDro) was used to assess the methodological quality of randomized controlled trials. Each trial was separated according to methodological quality into a high-quality trial (PEDro >= 6) and a low-quality trial (PEDro = 6). Only high-quality trials were analyzed specifically based on the outcome of these trials. Results: In total, 54 trials involving 1811 participants were included. Of the papers included and considered high quality, 14 trials evaluated areas of the Body Structures component, 20 trials of the Body Functions domain, 17 trials of the Activity component, and 8 trials of the Participation domain. In relation to ICF Part 2, four trials evaluated areas of the Personal Factors component and one trial evaluated domains of the Environmental Factors component. Discussion: The effects of virtual reality on stroke rehabilitation based on the ICF framework are positive in Body Function and Body Structure. However, the results in the domains Activity and Participation are inconclusive. More high-quality clinical trials are needed to confirm the effectiveness of virtual reality in the domains of Activity and Participation.
Palavras-chave
Virtual reality, stroke, rehabilitation, ICF, physiotherapy
Referências
  1. Barcala L, 2013, J PHYS THER SCI, V25, P1027, DOI 10.1589/jpts.25.1027
  2. Barker RN, 2005, DISABIL REHABIL, V27, P1213, DOI 10.1080/09638280500075717
  3. Barker RN, 2007, DISABIL REHABIL, V29, P981, DOI 10.1080/09638280500243570
  4. Barker RN, 2009, EXP BRAIN RES, V196, P483, DOI 10.1007/s00221-009-1872-8
  5. Byl NN, 2013, J HAND THER, V26, P343, DOI 10.1016/j.jht.2013.06.001
  6. Carr JH, 2006, Braz. J. Phys. Ther., V10, P147, DOI 10.1590/S1413-35552006000200003
  7. Choi Jun Hwan, 2014, Annals of Rehabilitation Medicine, V38, P485, DOI 10.5535/arm.2014.38.4.485
  8. Corbetta D, 2015, J PHYSIOTHER, V61, P117, DOI 10.1016/j.jphys.2015.05.017
  9. Crosbie JH, 2012, CLIN REHABIL, V26, P798, DOI 10.1177/0269215511434575
  10. Darekar A, 2015, J NEUROENG REHABIL, V12, DOI 10.1186/s12984-015-0035-3
  11. da Silva CM, 2011, RESTOR NEUROL NEUROS, V29, P287, DOI 10.3233/RNN-2011-0599
  12. de Bruijn MAAM, 2014, CEREBROVASC DIS, V37, P376, DOI 10.1159/000362592
  13. Deutsch JE, 2011, TOP STROKE REHABIL, V18, P701, DOI 10.1310/tsr1806-701
  14. Fu MJ, 2015, PHYS MED REH CLIN N, V26, P747, DOI 10.1016/j.pmr.2015.06.001
  15. Gamito P, 2015, DISABIL REHABIL, V2, P1
  16. Gil-Gomez JA, 2011, J NEUROENG REHABIL, V8, DOI 10.1186/1743-0003-8-30
  17. Gordon NF, 2004, CIRCULATION, V109, P2031, DOI 10.1161/01.CIR.0000126280.65777.A4
  18. Huber JG, 2010, DISABIL REHABIL, V32, P1955, DOI 10.3109/09638281003797414
  19. Jaffe DL, 2004, J REHABIL RES DEV, V41, P283, DOI 10.1682/JRRD.2004.03.0283
  20. Jung J, 2012, J PHYS THER SCI, V24, P1133
  21. Jung SH, 2005, ARCH PHYS MED REHAB, V86, P2218, DOI 10.1016/j.apmr.2005.04.015
  22. Kang SH, 2009, CLIN REHABIL, V23, P434, DOI 10.1177/0269215508101732
  23. Keshner E.A., 2004, J NEUROENG REHABIL, V1, P1
  24. Kim Bo Ryun, 2011, Annals of Rehabilitation Medicine, V35, P450, DOI 10.5535/arm.2011.35.4.450
  25. Kim EK, 2012, J PHYS THER SCI, V24, P901
  26. Kim JH, 2009, AM J PHYS MED REHAB, V88, P693, DOI 10.1097/PHM.0b013e3181b33350
  27. Kim N, 2015, J PHYS THER SCI, V27, P655, DOI 10.1589/jpts.27.655
  28. Kim YJ, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-124
  29. Kim Yong Mi, 2011, Annals of Rehabilitation Medicine, V35, P309, DOI 10.5535/arm.2011.35.3.309
  30. Kiper P, 2014, BIOMED RES INT, V2014
  31. Kiper P, 2011, NEUROL NEUROCHIR POL, V45, P436
  32. Kwakkel G, 2013, INT J STROKE, V8, P25, DOI 10.1111/j.1747-4949.2012.00967.x
  33. Kwon JS, 2012, NEUROREHABILITATION, V31, P379, DOI 10.3233/NRE-2012-00807
  34. Laffont I., 2014, Annals of Physical and Rehabilitation Medicine, V57, P543, DOI 10.1016/j.rehab.2014.08.007
  35. Lam YS, 2006, NEUROREHABILITATION, V21, P245
  36. Laver KE, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008349.pub3
  37. Lee D, 2014, J STROKE CEREBROVASC, V23, P1319, DOI 10.1016/j.jstrokecerebrovasdis.2013.11.006
  38. Lee SJ, 2014, ARCH PHYS MED REHAB, V95, P431, DOI 10.1016/j.apmr.2013.10.027
  39. Llorens R, 2015, CLIN REHABIL, V29, P261, DOI 10.1177/0269215514543333
  40. Llorens R, 2015, ARCH PHYS MED REHAB, V96, P418, DOI 10.1016/j.apmr.2014.10.019
  41. Luque-Moreno C, 2015, BIOMED RES INT, DOI 10.1155/2015/342529
  42. Maher CG, 2004, PHYS THER, V84, P644
  43. Mao Y., 2014, DATABASE, V2014, P1
  44. McEwen D, 2014, STROKE, V45, P1853, DOI 10.1161/STROKEAHA.114.005362
  45. Mirelman A, 2009, STROKE, V40, P169, DOI 10.1161/STROKEAHA.108.516328
  46. Moher D, 2009, J CLIN EPIDEMIOL, V62, P1006, DOI 10.1016/j.jclinepi.2009.06.005
  47. Moreira Marcela Cavalcanti, 2013, Disabil Rehabil Assist Technol, V8, P357, DOI 10.3109/17483107.2012.749428
  48. Orihuela-Espina F, 2013, TOP STROKE REHABIL, V20, P197, DOI 10.1310/tsr2003-197
  49. Paquin K, 2015, DISABIL REHABIL, V37, P2184, DOI 10.3109/09638288.2014.1002574
  50. Park Yu-Hyung, 2013, J Exerc Rehabil, V9, P489, DOI 10.12965/jer.130066
  51. Patient-Centered Outcomes Research Institute, PAT CENT APPR
  52. Pietrzah E, 2014, TOP STROKE REHABIL, V21, P152, DOI 10.1310/tsr2102-152
  53. Piron L, 2003, ST HEAL T, V94, P265
  54. Piron L, 2010, NEUROREHAB NEURAL RE, V24, P501, DOI 10.1177/1545968310362672
  55. Piron L, 2009, J REHABIL MED, V41, P1016, DOI 10.2340/16501977-0459
  56. Pompeu José Eduardo, 2014, Motri., V10, P111, DOI 10.6063/motricidade.10(4).3341
  57. Prange GB, 2015, NEUROREHAB NEURAL RE, V29, P174, DOI 10.1177/1545968314535985
  58. Rajaratnam BS, 2013, REHABIL RES PRACT, V2013, P1
  59. Rand D, 2014, NEUROREHAB NEURAL RE, V28, P733, DOI 10.1177/1545968314521008
  60. Skip Rizzo A, 2011, J DIABETES SCI TECHN, V5, P256
  61. Saposnik G, 2010, INT J STROKE, V5, P47, DOI 10.1111/j.1747-4949.2009.00404.x
  62. Saposnik G, 2011, STROKE, V42, P1380, DOI 10.1161/STROKEAHA.110.605451
  63. Scherer MJ, 2008, DISABIL REHABIL, V30, P161, DOI 10.1080/09638280701532292
  64. Schneidert M, 2003, DISABIL REHABIL, V25, P588, DOI 10.1080/0963828031000137090
  65. Shin JH, 2015, COMPUT BIOL MED, V63, P92, DOI 10.1016/j.compbiomed.2015.03.011
  66. Shin JH, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-32
  67. Shiwa Sílvia Regina, 2011, Fisioter. mov., V24, P523, DOI 10.1590/S0103-51502011000300017
  68. Sin H, 2013, AM J PHYS MED REHAB, V92, P871, DOI 10.1097/PHM.0b013e3182a38e40
  69. Singh DKA, 2013, BMC NEUROL, V13, DOI 10.1186/1471-2377-13-199
  70. Song Yoon Bum, 2014, Annals of Rehabilitation Medicine, V38, P160, DOI 10.5535/arm.2014.38.2.160
  71. Subramaniam S, 2014, J NEUROL PHYS THER, V38, P216, DOI 10.1097/NPT.0000000000000056
  72. Subramanian SK, 2013, NEUROREHAB NEURAL RE, V27, P13, DOI 10.1177/1545968312449695
  73. Thielbar KO, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-171
  74. Tsoupikova D, 2015, ANN BIOMED ENG, V43, P467, DOI 10.1007/s10439-014-1218-y
  75. Turolla A, 2013, J NEUROENG REHABIL, V10, DOI 10.1186/1743-0003-10-85
  76. Ustun TB, 2003, DISABIL REHABIL, V25, P565, DOI 10.1080/0963828031000137063
  77. Vargus-Adams JN, 2014, J CHILD NEUROL, V29, P1030, DOI 10.1177/0883073814533595
  78. Veerbeek JM, 2011, STROKE, V42, P3311, DOI 10.1161/STROKEAHA.111.623819
  79. Veerbeek JM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087987
  80. Viana RT, 2014, NEUROREHABILITATION, V34, P437, DOI 10.3233/NRE-141065
  81. Weisfeld N, 2012, ENVISIONING TRANSFOR
  82. World Health Organization, 2001, INT CLASS FUNCT DIS
  83. World Health Organization, 2008, INT CLASS FUNCT DIS
  84. Yang SW, 2011, AM J PHYS MED REHAB, V90, P969, DOI 10.1097/PHM.0b013e3182389fae
  85. Yang YR, 2008, GAIT POSTURE, V28, P201, DOI 10.1016/j.gaitpost.2007.11.007
  86. Yavuzer G, 2008, EUR J PHYS REHAB MED, V44, P237
  87. Yin CW, 2014, CLIN REHABIL, V6, P1
  88. Yom C, 2015, J PHYS THER SCI, V27, P845, DOI 10.1589/jpts.27.845
  89. You SH, 2005, STROKE, V36, P1166, DOI 10.1161/01.STR.0000162715.43417.91
  90. Zheng CJ, 2015, J HUAZHONG U SCI-MED, V35, P248, DOI 10.1007/s11596-015-1419-0