Does brain creatine content rely on exogenous creatine in healthy youth? A proof-of-principle study

Carregando...
Imagem de Miniatura
Citações na Scopus
22
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
Autores
MEREGE-FILHO, Carlos Alberto Abujabra
OLIVEIRA, Maira Okada de
GONCALVES, Livia de Souza
HAYASHI, Ana Paula Tanaka
ROSCHEL, Hamilton
Citação
APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, v.42, n.2, p.128-134, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
It has been hypothesized that dietary creatine could influence cognitive performance by increasing brain creatine in developing individuals. This double-blind, randomized, placebo-controlled, proof-of-principle study aimed to investigate the effects of creatine supplementation on cognitive function and brain creatine content in healthy youth. The sample comprised 67 healthy participants aged 10 to 12 years. The participants were given creatine or placebo supplementation for 7 days. At baseline and after the intervention, participants undertook a battery of cognitive tests. In a random subsample of participants, brain creatine content was also assessed in the regions of left dorsolateral prefrontal cortex, left hippocampus, and occipital lobe by proton magnetic resonance spectroscopy (1H-MRS) technique. The scores obtained from verbal learning and executive functions tests did not significantly differ between groups at baseline or after the intervention (all p > 0.05). Creatine content was not significantly different between groups in left dorsolateral prefrontal cortex, left hippocampus, and occipital lobe (all p > 0.05). In conclusion, a 7-day creatine supplementation protocol did not elicit improvements in brain creatine content or cognitive performance in healthy youth, suggesting that this population mainly relies on brain creatine synthesis rather than exogenous creatine intake to maintain brain creatine homeostasis.
Palavras-chave
cerebral metabolism, children, dietary supplement, neuropsychological assessment, nuclear medicine, phosphoryilcreatine
Referências
  1. Alves CRR, 2013, ARTHRIT CARE RES, V65, P1449, DOI 10.1002/acr.22020
  2. Andres RH, 2008, BRAIN RES BULL, V76, P329, DOI 10.1016/j.brainresbull.2008.02.035
  3. Arbuthnott K, 2000, J CLIN EXP NEUROPSYC, V22, P518, DOI 10.1076/1380-3395(200008)22:4;1-0;FT518
  4. Beard E, 2010, J NEUROCHEM, V115, P297, DOI 10.1111/j.1471-4159.2010.06935.x
  5. Benton D, 2011, BRIT J NUTR, V105, P1100, DOI 10.1017/S0007114510004733
  6. Braissant O, 2001, MOL BRAIN RES, V86, P193, DOI 10.1016/S0169-328X(00)00269-2
  7. Braissant O, 2011, AMINO ACIDS, V40, P1315, DOI 10.1007/s00726-011-0852-z
  8. Brosnan ME, 2016, AMINO ACIDS, V48, P1785, DOI 10.1007/s00726-016-2188-1
  9. CHUGANI HT, 1987, ANN NEUROL, V22, P487, DOI 10.1002/ana.410220408
  10. Dechent P, 1999, AM J PHYSIOL-REG I, V277, pR698
  11. Erecinska M, 2004, PROG NEUROBIOL, V73, P397, DOI 10.1016/j.pneurobio.2004.06.003
  12. Giedd JN, 1999, NAT NEUROSCI, V2, P861, DOI 10.1038/13158
  13. Hammett ST, 2010, NEUROSCI LETT, V479, P201, DOI 10.1016/j.neulet.2010.05.054
  14. HARRIS RC, 1992, CLIN SCI, V83, P367
  15. Henke K, 1997, HIPPOCAMPUS, V7, P249, DOI 10.1002/(SICI)1098-1063(1997)7:3<249::AID-HIPO1>3.0.CO;2-G
  16. in 't Zandt HJA, 2004, J NEUROCHEM, V90, P1321, DOI 10.1111/j.1471-4159.2004.02599.x
  17. Item CB, 2001, AM J HUM GENET, V69, P1127, DOI 10.1086/323765
  18. Kaldis P, 1996, DEV NEUROSCI-BASEL, V18, P542, DOI 10.1159/000111452
  19. Kane MJ, 2002, PSYCHON B REV, V9, P637, DOI 10.3758/BF03196323
  20. Ling J, 2009, BEHAV PHARMACOL, V20, P673, DOI 10.1097/FBP.0b013e3283323c2a
  21. Lyoo IK, 2003, PSYCHIAT RES-NEUROIM, V123, P87, DOI 10.1016/S0925-4927(03)00046-5
  22. MARSHALL WA, 1970, ARCH DIS CHILD, V45, P13
  23. McMorris T, 2007, PHYSIOL BEHAV, V90, P21, DOI 10.1016/j.physbeh.2006.08.024
  24. McMorris T, 2007, AGING NEUROPSYCHOL C, V14, P517, DOI 10.1080/13825580600788100
  25. Pan JW, 2007, AM J PHYSIOL-REG I, V292, pR1745, DOI 10.1152/ajpregu.00717.2006
  26. Raven J., 1995, COLORED PROGR MATR A
  27. Rawson ES, 2008, PHYSIOL BEHAV, V95, P130, DOI 10.1016/j.physbeh.2008.05.009
  28. Alves CRR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076301
  29. Salomons GS, 2003, J INHERIT METAB DIS, V26, P309, DOI 10.1023/A:1024405821638
  30. Salomons GS, 2001, AM J HUM GENET, V68, P1497, DOI 10.1086/320595
  31. Solis MY, 2014, BRIT J NUTR, V111, P1272, DOI 10.1017/S0007114513003802
  32. Stockler S, 1996, LANCET, V348, P789, DOI 10.1016/S0140-6736(96)04116-5
  33. STOCKLER S, 1994, PEDIATR RES, V36, P409
  34. Stockler-Ipsiroglu S, 2014, SEMIN NEUROL, V34, P350, DOI 10.1055/s-0034-1386772
  35. Strauss E, 2006, COMPENDIUM NEUROPSYC
  36. Turner CE, 2015, J NEUROSCI, V35, P1773, DOI 10.1523/JNEUROSCI.3113-14.2015
  37. Watanabe A, 2002, NEUROSCI RES, V42, P279, DOI 10.1016/S0168-0102(02)00007-X
  38. WYSS M, 1994, MOL CELL BIOCHEM, V133, P51, DOI 10.1007/BF01267947
  39. Wyss M, 2000, PHYSIOL REV, V80, P1107
  40. Zhang YY, 2001, IEEE T MED IMAGING, V20, P45, DOI 10.1109/42.906424
  41. Zoelch N., 1977, P 23 ANN M EXH INT S