Chemical composition of aerosol in Sao Paulo, Brazil: influence of the transport of pollutants

Carregando...
Imagem de Miniatura
Citações na Scopus
18
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER INTERNATIONAL PUBLISHING AG
Autores
PEREIRA, G. M.
CAUMO, S. E. S.
SOARES, S.
TEINILA, K.
CUSTODIO, D.
HILLAMO, R.
ALVES, C.
VASCONCELLOS, P. C.
Citação
AIR QUALITY ATMOSPHERE AND HEALTH, v.10, n.4, p.457-468, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Sao Paulo is a Latin American megacity impacted by heavy traffic emissions and also affected by biomass burning and biogenic emissions. To better understand the sources of pollution during a highly polluted period, PM10 samples were collected in an intensive campaign in 2013. The concentrations of particulate matter, organic carbon (OC), elemental carbon (EC), biomass burning tracers (levoglucosan, mannosan, and galactosan), water-soluble ions, and polycyclic aromatic hydrocarbons (PAHs) were determined to identify the main sources affecting the air quality. The PAHs results were compared to an intensive campaign done in 2012. Backward air masses trajectories were used in other to investigate the influence of remote sources. The average benzo[a]pyrene equivalent index (BaPE) values represented a higher cancer risk in 2013 samples than in 2012; the diagnostic ratios indicated vehicular emissions for both campaigns but fresher particles emission for 2013 campaign. During the 2013 campaign, the samples presented good correlations between OC and EC with monosaccharides, suggesting an influence of biomass burning on the carbonaceous species. Levoglucosan to mannosan ratio indicated the influence of sugarcane burning; the backward air masses trajectories suggested transport of aerosol from the sugarcane production region in 60 % of the sampling days.
Palavras-chave
Atmospheric pollution, Atmospheric particulate matter, Aerosol transport, Organic pollutants, Water-soluble ions, Biomass burning
Referências
  1. Alves CA, 2015, ATMOS RES, V153, P134, DOI 10.1016/j.atmosres.2014.08.002
  2. Alves ND, 2015, ATMOS ENVIRON, V120, P277, DOI 10.1016/j.atmosenv.2015.08.059
  3. Andrade MD, 2012, AIR QUAL ATMOS HLTH, V5, P79, DOI 10.1007/s11869-010-0104-5
  4. Andrade M.F., 2012, ATMOS ENVIRON, V61, P627
  5. Andrade S.J., 2010, ATMOS ENVIRON, V44, P2913, DOI [10.1016/j.atmosenv.2010.04.026, DOI 10.1016/J.ATMOSENV.2010.04.026]
  6. Behera SN, 2010, SCI TOTAL ENVIRON, V408, P3569, DOI 10.1016/j.scitotenv.2010.04.017
  7. Bougiatioti A, 2013, ATMOS ENVIRON, V64, P251, DOI 10.1016/j.atmosenv.2012.09.071
  8. Brito J, 2013, ATMOS CHEM PHYS, V13, P12199, DOI 10.5194/acp-13-12199-2013
  9. Cabada JC, 2004, AEROSOL SCI TECH, V38, P140, DOI 10.1080/02786820390229084
  10. Castanho Andrea D. A., 2001, Atmospheric Environment, V35, P4889, DOI 10.1016/S1352-2310(01)00357-0
  11. da Rocha GO, 2005, ENVIRON SCI TECHNOL, V39, P5293, DOI 10.1021/es048007u
  12. De La Torre-Roche RJ, 2009, J HAZARD MATER, V163, P946, DOI 10.1016/j.jhazmat.2008.07.089
  13. de Miranda RM, 2012, AIR QUAL ATMOS HLTH, V5, P63, DOI 10.1007/s11869-010-0124-1
  14. Decesari S, 2006, ATMOS CHEM PHYS, V6, P375
  15. Draxler R.R., 2003, HYSPLIT HYBRID SINGL
  16. Du HH, 2011, ATMOS ENVIRON, V45, P5131, DOI 10.1016/j.atmosenv.2011.06.027
  17. Duan FK, 2004, ATMOS ENVIRON, V38, P1275, DOI 10.1016/j.atmosenv.2003.11.037
  18. Engling G, 2013, J AEROSOL SCI, V56, P2, DOI 10.1016/j.jaerosci.2012.10.001
  19. Engling G, 2009, AEROSOL SCI TECH, V43, P662, DOI 10.1080/02786820902825113
  20. Fabbri D, 2009, ATMOS ENVIRON, V43, P2286, DOI 10.1016/j.atmosenv.2009.01.030
  21. Fleming ZL, 2012, ATMOS RES, V104, P1, DOI 10.1016/j.atmosres.2011.09.009
  22. Giannoni M, 2012, ENVIRON POLLUT, V167, P7, DOI 10.1016/j.envpol.2012.03.016
  23. Graham B, 2002, J GEOPHYS RES-ATMOS, V107, DOI 10.1029/2001JD000336
  24. Hall D, 2012, ATMOS ENVIRON, V55, P164, DOI 10.1016/j.atmosenv.2012.03.034
  25. INPE, 2013, NAT I SPAC RES BRAZ
  26. Jung J, 2014, ATMOS ENVIRON, V89, P642, DOI 10.1016/j.atmosenv.2014.03.010
  27. Jung KH, 2010, INT J ENV RES PUB HE, V7, P1889, DOI 10.3390/ijerph7051889
  28. Karthikeyan S, 2006, MICROCHEM J, V82, P49, DOI 10.1016/j.microc.2005.07.003
  29. Kelly FJ, 2012, ATMOS ENVIRON, V60, P504, DOI 10.1016/j.atmosenv.2012.06.039
  30. Kundu S, 2010, J AEROSOL SCI, V41, P118, DOI 10.1016/j.jaerosci.2009.08.006
  31. Lee T, 2010, AEROSOL SCI TECH, V44, pI, DOI 10.1080/02786826.2010.499884
  32. Li XR, 2012, ATMOS ENVIRON, V50, P278, DOI 10.1016/j.atmosenv.2011.12.021
  33. Liu D, 2013, ENVIRON SCI TECHNOL, V47, P10454, DOI 10.1021/es401250k
  34. Maenhaut W, 2012, SCI TOTAL ENVIRON, V437, P226, DOI 10.1016/j.scitotenv.2012.08.015
  35. Magalhaes D, 2007, QUIM NOVA, V30, P577, DOI 10.1590/S0100-40422007000300014
  36. Miguel AH, 1998, ENVIRON SCI TECHNOL, V32, P450, DOI 10.1021/es970566w
  37. Nava S, 2015, SCI TOTAL ENVIRON, V511, P11, DOI 10.1016/j.scitotenv.2014.11.034
  38. Newby DE, 2015, EUR HEART J, V36, P83, DOI 10.1093/eurheartj/ehu458
  39. Oliveira C, 2011, CHEMOSPHERE, V83, P1588, DOI 10.1016/j.chemosphere.2011.01.011
  40. Peng RD, 2009, ENVIRON HEALTH PERSP, V117, P957, DOI 10.1289/ehp.0800185
  41. Pio CA, 2008, ATMOS ENVIRON, V42, P7530, DOI 10.1016/j.atmosenv.2008.05.032
  42. Poschl U, 2005, ANGEW CHEM INT EDIT, V44, P7520, DOI 10.1002/anie.200501122
  43. Ravindra K, 2008, ATMOS ENVIRON, V42, P2895, DOI 10.1016/j.atmosenv.2007.12.010
  44. Saarnio K, 2010, ANAL BIOANAL CHEM, V398, P2253, DOI 10.1007/s00216-010-4151-4
  45. Samanta SK, 2002, TRENDS BIOTECHNOL, V20, P243, DOI 10.1016/S0167-7799(02)01943-1
  46. Scaramboni C, 2015, ATMOS ENVIRON, V100, P185, DOI 10.1016/j.atmosenv.2014.11.003
  47. Schkolnik G, 2005, ENVIRON SCI TECHNOL, V39, P2744, DOI 10.1021/es048363c
  48. SICRE MA, 1987, ATMOS ENVIRON, V21, P2247, DOI 10.1016/0004-6981(87)90356-8
  49. Simoneit BRT, 1999, ATMOS ENVIRON, V33, P173, DOI 10.1016/S1352-2310(98)00145-9
  50. Callen MS, 2014, ENVIRON POLLUT, V195, P167, DOI 10.1016/j.envpol.2014.08.025
  51. Souza DZ, 2014, AEROSOL AIR QUAL RES, V14, P168, DOI 10.4209/aaqr.2013.03.0071
  52. Sullivan AP, 2008, J GEOPHYS RES-ATMOS, V113, DOI 10.1029/2008JD010216
  53. Szidat S, 2006, J GEOPHYS RES-ATMOS, V111, DOI 10.1029/2005JD006590
  54. Timonen H, 2013, J AEROSOL SCI, V56, P61, DOI 10.1016/j.jaerosci.2012.06.005
  55. Urban RC, 2014, ATMOS ENVIRON, V90, P106, DOI 10.1016/j.atmosenv.2014.03.034
  56. Valle-Hernandez BL, 2010, SCI TOTAL ENVIRON, V408, P5429, DOI 10.1016/j.scitotenv.2010.07.065
  57. Vasconcellos PC, 2007, WATER AIR SOIL POLL, V186, P63, DOI 10.1007/s11270-007-9465-2
  58. Vasconcellos PC, 2011, ATMOS ENVIRON, V45, P5770, DOI 10.1016/j.atmosenv.2011.07.018
  59. Vasconcellos PC, 2010, SCI TOTAL ENVIRON, V408, P5836, DOI 10.1016/j.scitotenv.2010.08.012
  60. Vieira-Filho MS, 2013, ATMOS ENVIRON, V79, P299, DOI 10.1016/j.atmosenv.2013.05.047
  61. Villalobos AM, 2015, SCI TOTAL ENVIRON, V512, P133, DOI 10.1016/j.scitotenv.2015.01.006
  62. WHO, 2006, WHO AIR QUAL GUID PA
  63. WHO, 2000, AIR QUAL GUID EUR
  64. Yassaa N, 2001, ATMOS ENVIRON, V35, P1843, DOI 10.1016/S1352-2310(00)00514-8
  65. Yttri KE, 2015, ATMOS MEAS TECH, V8, P125, DOI 10.5194/amt-8-125-2015
  66. Zhang ZS, 2015, ATMOS ENVIRON, V102, P290, DOI 10.1016/j.atmosenv.2014.12.009
  67. Zhao JP, 2011, ATMOS RES, V99, P546, DOI 10.1016/j.atmosres.2010.12.017
  68. Zhao YL, 2008, SCI TOTAL ENVIRON, V407, P541, DOI 10.1016/j.scitotenv.2008.09.002