Influences of Duration of Inspiratory Effort, Respiratory Mechanics, and Ventilator Type on Asynchrony With Pressure Support and Proportional Assist Ventilation

Carregando...
Imagem de Miniatura
Citações na Scopus
20
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
DAEDALUS ENTERPRISES INC
Autores
VASCONCELOS, Renata S.
SALES, Raquel P.
MELO, Luiz H. de P.
MARINHO, Liegina S.
BASTOS, Vasco P. D.
NOGUEIRA, Andrea da N. C.
HOLANDA, Marcelo A.
Citação
RESPIRATORY CARE, v.62, n.5, p.550-557, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND: Pressure support ventilation (PSV) is often associated with patient-ventilator asynchrony. Proportional assist ventilation (PAV) offers inspiratory assistance proportional to patient effort, minimizing patient-ventilator asynchrony. The objective of this study was to evaluate the influence of respiratory mechanics and patient effort on patient-ventilator asynchrony during PSV and PAV plus (PAV+). METHODS: We used a mechanical lung simulator and studied 3 respiratory mechanics profiles (normal, obstructive, and restrictive), with variations in the duration of inspiratory effort: 0.5, 1.0, 1.5, and 2.0 s. The Auto-Trak system was studied in ventilators when available. Outcome measures included inspiratory trigger delay, expiratory trigger asynchrony, and tidal volume (V-T). RESULTS: Inspiratory trigger delay was greater in the obstructive respiratory mechanics profile and greatest with a effort of 2.0 s (160 ms); cycling asynchrony, particularly delayed cycling, was common in the obstructive profile, whereas the restrictive profile was associated with premature cycling. In comparison with PSV, PAV+ improved patient-ventilator synchrony, with a shorter triggering delay (28 ms vs 116 ms) and no cycling asynchrony in the restrictive profile. V-T was lower with PAV+ than with PSV (630 mL vs 837 mL), as it was with the single-limb circuit ventilator (570 mL vs 837 mL). PAV+ mode was associated with longer cycling delays than were the other ventilation modes, especially for the obstructive profile and higher effort values. Auto-Trak eliminated automatic triggering. CONCLUSIONS: Mechanical ventilation asynchrony was influenced by effort, respiratory mechanics, ventilator type, and ventilation mode. In PSV mode, delayed cycling was associated with shorter effort in obstructive respiratory mechanics profiles, whereas premature cycling was more common with longer effort and a restrictive profile. PAV+ prevented premature cycling but not delayed cycling, especially in obstructive respiratory mechanics profiles, and it was associated with a lower V-T.
Palavras-chave
artificial respiration, respiratory mechanics, COPD, ARDS, mechanical ventilators
Referências
  1. Alexopoulou C, 2013, INTENS CARE MED, V39, P1040, DOI 10.1007/s00134-013-2850-y
  2. Aslanian P, 1998, AM J RESP CRIT CARE, V157, P135
  3. Battisti A, 2005, CHEST, V127, P1784, DOI 10.1378/chest.127.5.1784
  4. Blanch L, 2015, INTENS CARE MED, V41, P633, DOI 10.1007/s00134-015-3692-6
  5. Bosma K, 2007, CRIT CARE MED, V35, P1048, DOI 10.1097/01.CCM.0000260055.64235.7C
  6. Carteaux G, 2012, CHEST, V142, P367, DOI 10.1378/chest.11-2279
  7. Chiumello D, 2014, J CRIT CARE, V29, P457, DOI 10.1016/j.jcrc.2014.02.009
  8. Costa R, 2011, INTENS CARE MED, V37, P1494, DOI 10.1007/s00134-011-2297-y
  9. Costa R, 2010, INTENS CARE MED, V36, P1363, DOI 10.1007/s00134-010-1915-4
  10. Du H L, 2001, Respir Care Clin N Am, V7, P503, DOI 10.1016/S1078-5337(05)70046-0
  11. Du HL, 2001, RESP CARE CLIN N AM, V7
  12. Ferreira JC, 2008, INTENS CARE MED, V34, P1669, DOI 10.1007/s00134-008-1125-5
  13. Ferreira JC, 2009, CHEST, V136, P448, DOI 10.1378/chest.08-3018
  14. Grasso S, 2000, AM J RESP CRIT CARE, V161, P819
  15. Hoff FC, 2014, J CRIT CARE, V29, P380, DOI 10.1016/j.jcrc.2014.01.015
  16. IngMar Medical, 2006, 5000 ASL INGMAR MED
  17. Kacmarek RM, 2011, RESP CARE, V56, P140, DOI 10.4187/respcare.01021
  18. Kondili E, 2006, INTENS CARE MED, V32, P692, DOI 10.1007/s00134-006-0110-0
  19. Kondili E, 2003, BRIT J ANAESTH, V91, P106, DOI 10.1093/bja/aeg129
  20. Kondili E, 2007, CURR OPIN CRIT CARE, V13, P84, DOI 10.1097/MCC.0b013e328011278d
  21. Murata S, 2010, RESP CARE, V55, P878
  22. NAVA S, 1995, INTENS CARE MED, V21, P871, DOI 10.1007/BF01712327
  23. Papazian L, 2010, NEW ENGL J MED, V363, P1107, DOI 10.1056/NEJMoa1005372
  24. Pierson DJ, 2011, RESP CARE, V56, P214, DOI 10.4187/respcare.01115
  25. Prinianakis G, 2003, INTENS CARE MED, V29, P1950, DOI 10.1007/s00134-003-1703-5
  26. Rdos S Vasconcelos, 2013, RESPIRATION, V86, P497
  27. Tassaux D, 2005, AM J RESP CRIT CARE, V172, P1283, DOI 10.1164/rccm.200407-880OC
  28. Thille AW, 2008, INTENS CARE MED, V34, P1477, DOI 10.1007/s00134-008-1121-9
  29. Thille AW, 2006, INTENS CARE MED, V32, P1515, DOI 10.1007/s00134-006-0301-8
  30. Thille AW, 2009, INTENS CARE MED, V35, P1368, DOI 10.1007/s00134-009-1467-7
  31. Tokioka H, 2001, ANESTH ANALG, V92, P161
  32. Vignaux L, 2007, INTENS CARE MED, V33, P1444, DOI 10.1007/s00134-007-0713-0
  33. Yamada Y, 2000, J APPL PHYSIOL, V88, P2143
  34. YOUNES M, 1992, AM REV RESPIR DIS, V145, P114