Influence of Maternal Age and Parity on Placental Structure and Foal Characteristics From Birth up to 2 Years of Age

Carregando...
Imagem de Miniatura
Citações na Scopus
18
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
MEIRELLES, Marcela Goncalves
ALONSO, Maria Augusta
GUIMARAES, Carina de Fatima
NICHI, Marcilio
FERNANDES, Claudia Barbosa
Citação
JOURNAL OF EQUINE VETERINARY SCIENCE, v.56, p.68-79, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The foal's weight and height at birth are regarded as important parameters for the equestrian sports industry. Moreover, scientific studies indicate that maternal environment can influence postnatal genetic potential of foals. The purpose of this study was to evaluate the influence of maternal age and parity on placental efficiency and size of the newborn foal using stereological analysis tools of the term's allantochorion. Furthermore, the influence of maternal age and parity on weight, height, and girth circumference of the offspring from birth until 2 years of age was investigated. Forty pregnant mares were categorized according to age: 4-8 years (n = 15); 9-12 years (n = 15); >= 13 years (n = 10) and parity: nulliparous (n = 12), 1-3 parities (n = 18); >= 4 parities (n = 10). Parturition was monitored and the allantochorion membranes were collected after delivery. The stereological analysis determined the volumetric composition of the different compartments of the placenta along with the area of fetomaternal contact surface. It was observed that maternal age and parity significantly increased the development of the microcotyledons and total villi surface density, as well as the vascularization and tissue composition of different regions of the placenta, which contributes to fetomaternal contact. We also found a significant relationship between maternal age and parity on the size of the neonate foals but not after the first year of age, possibly because environmental and genetic factors contribute to postnatal growth.
Palavras-chave
Allantochorion, Stereology, Mare, Foal, Growth
Referências
  1. Abd-Elnaeim MMM, 2006, PLACENTA, V27, P1103, DOI 10.1016/j.placenta.2005.11.005
  2. Allen WR, 2004, REPRODUCTION, V127, P67, DOI 10.1530/rep.1.00024
  3. Allen WR, 2002, REPRODUCTION, V123, P445, DOI 10.1530/rep.0.1230445
  4. Ashbury AC, 1993, EQUINE REPROD, P509
  5. BADDELEY AJ, 1986, J MICROSC-OXFORD, V142, P259
  6. Barker DJP, 2002, INT J EPIDEMIOL, V31, P1235, DOI 10.1093/ije/31.6.1235
  7. Bracher V, 1996, EQUINE VET J, V28, P180
  8. Brown-Douglas CG, 2006, P KENT EQ RES NUTR C, V15, P15
  9. Burton GJ, 2009, REPRODUCTION, V138, P895, DOI 10.1530/REP-09-0092
  10. Coan PM, 2008, J PHYSIOL-LONDON, V586, P4567, DOI 10.1113/jphysiol.2008.156133
  11. Coan PM, 2006, DEV DYNAM, V235, P3280, DOI 10.1002/dvdy.20981
  12. Coan PM, 2004, BIOL REPROD, V70, P1806, DOI 10.1095/biolreprod.103.024166
  13. Dwyer CM, 2005, THERIOGENOLOGY, V63, P1092, DOI 10.1016/j.theriogenology.2004.06.003
  14. Elliott C, 2009, THERIOGENOLOGY, V71, P683, DOI 10.1016/j.theriogenology.2008.09.041
  15. Fernandes CB, 2014, J EQUINE VET SCI, V34, P225
  16. Forhead AJ, 2004, J ENDOCRINOL, V181, P459, DOI 10.1677/joe.0.1810459
  17. Fowden AL, 2009, J PHYSIOL-LONDON, V587, P3459, DOI 10.1113/jphysiol.2009.173013
  18. Fowden AL, 2006, J PHYSIOL-LONDON, V572, P5, DOI 10.1113/jphysiol.2005.104141
  19. Fowden AL, 2004, REPRODUCTION, V127, P515, DOI 10.1530/rep.1.00033
  20. Freking BA, 2016, ANIM REPROD SCI, V167, P16, DOI 10.1016/j.anireprosci.2016.01.018
  21. Giussani DA, 2003, J PHYSIOL-LONDON, V547, P67, DOI 10.1113/jphysiol.2002.027409
  22. Guimardes FM, 2015, BRAZ J VET RES ANIM, V52, P98
  23. Higgins M, 2011, PLACENTA, V32, P564, DOI 10.1016/j.placenta.2011.04.015
  24. Howard CV, 2005, UNBIASED STEREOLOGY, P278
  25. Kannekens EM, 2006, RES VET SCI, V81, P127, DOI 10.1016/j.rvsc.2005.09.006
  26. Khong TY, 2003, PLACENTA, V24, P348, DOI 10.1053/plac.2002.0922
  27. Klewitz J, 2015, THERIOGENOLOGY, V83, P721, DOI 10.1016/j.theriogenology.2014.11.007
  28. Leiser R, 1997, J ANAT, V191, P517, DOI 10.1046/j.1469-7580.1997.19140517.x
  29. Macdonald AA, 2000, PLACENTA, V21, P565, DOI 10.1053/plac.2000.0510
  30. Mayhew TM, 2009, J ANAT, V215, P77, DOI 10.1111/j.1469-7580.2008.00994.x
  31. Mayhew TM, 2003, PLACENTA, V24, P219, DOI 10.1053/plac.2002.0900
  32. McMullen S, 2009, P NUTR SOC, V68, P306, DOI 10.1017/S0029665109001396
  33. Navarrete KR, 2005, AV CS VET, V20, P61
  34. Ocak S, 2015, ANIM REPROD, V12, P920
  35. Ocak S, 2009, J ANIM SCI, V87, P3196, DOI 10.2527/jas.2009-1913
  36. Ousey JC, 2012, EQUINE VET J, V44, P15, DOI 10.1111/j.2042-3306.2011.00446.x
  37. Pagan JD, 2005, P EQ SCI SOC S, V19, P224
  38. Peugnet P, 2016, THERIOGENOLOGY, V86, P99, DOI 10.1016/j.theriogenology.2016.01.028
  39. Reynolds LP, 2005, PLACENTA, V26, P689, DOI 10.1016/j.placenta.2004.11.010
  40. Rice G., 1998, Equine Veterinary Journal, V30, P457
  41. Rolland MCP, 2014, PLOS ONE, V9, P1
  42. Rossdale PD, 2002, EQUINE VET EDUC, V14, P98
  43. Samson JE, 2011, PLACENTA, V32, P845, DOI 10.1016/j.placenta.2011.07.083
  44. Souza A, 2014, PLACENTA, V35, pA45
  45. Tischner M, 1989, J REPROD FERTIL S, V35, P705
  46. Vazquez JJ, 2015, P 4 INT C WORLD EQ V
  47. Veras MM, 2008, BIOL REPROD, V79, P578, DOI 10.1095/biolreprod.108.069591
  48. Veronesi MC, 2010, THERIOGENOLOGY, V74, P627, DOI 10.1016/j.theriogenology.2010.03.006
  49. Walton A, 1938, PROC R SOC SER B-BIO, V125, P311, DOI 10.1098/rspb.1938.0029
  50. Wilsher S, 2003, EQUINE VET J, V35, P476, DOI 10.2746/042516403775600550
  51. Wu G, 2006, J ANIM SCI, V84, P2316, DOI 10.2527/jas.2006-156
  52. Yamamoto Osamu, 1993, Animal Science and Technology, V64, P491