Pivotal Role of Toll-Like Receptors 2 and 4, Its Adaptor Molecule MyD88, and Inflammasome Complex in Experimental Tubule-Interstitial Nephritis

Nenhuma Miniatura disponível
Citações na Scopus
81
Tipo de produção
article
Data de publicação
2011
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
CORREA-COSTA, Matheus
BRAGA, Tarcio Teodoro
SEMEDO, Patricia
HAYASHIDA, Caroline Yuri
BECHARA, Luiz Roberto Grassmann
ELIAS, Rosa Maria
BARRETO, Claudiene Rodrigues
SILVA-CUNHA, Claudia
HYANE, Meire Ioshie
GONCALVES, Giselle Martins
Citação
PLOS ONE, v.6, n.12, article ID e29004, 7p, 2011
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Tubule-interstitial nephritis (TIN) results in decreased renal function and interstitial inflammation, which ultimately leads to fibrosis. Excessive adenine intake can cause TIN because xanthine dehydrogenase (XDH) can convert this purine into an insoluble compound, which precipitates in the tubuli. Innate immune sensors, such as Toll-like receptors (TLR) and inflammasome complex, play a crucial role in the initiation of inflammation. The aim of this study was to evaluate the roles of TLR-2 and -4, Myd88 and inflammasome complex in an experimental model of TIN. Here, we show that wild-type (WT) mice fed adenine-enriched food exhibited significant renal dysfunction and enhanced cellular infiltration accompanied by collagen deposition. They also presented higher gene and protein expression of pro-inflammatory cytokines. In contrast, TLR-2, -4, MyD88, ASC and Caspase-1 KO mice showed renoprotection associated with expression of inflammatory molecules at levels comparable to controls. Furthermore, treatment of WT animals with allopurinol, an XDH inhibitor, led to reduced levels of uric acid, oxidative stress, collagen deposition and a downregulation of the NF-kB signaling pathway. We concluded that MyD88 signaling and inflammasome participate in the development of TIN. Furthermore, inhibition of XDH seems to be a promising way to therapeutically target the developing inflammatory process.
Palavras-chave
Referências
  1. Burne-Taney MJ, 2005, KIDNEY INT, V67, P1002, DOI 10.1111/j.1523-1755.2005.00163.x
  2. Gasse P, 2009, AM J RESP CRIT CARE, V179, P903, DOI 10.1164/rccm.200808-1274OC
  3. Nishino T, 2008, FEBS J, V275, P3278, DOI 10.1111/j.1742-4658.2008.06489.x
  4. Bataller R, 2005, J CLIN INVEST, V115, P209, DOI 10.1172/JCI200524282
  5. PFEFFER KD, 1994, J IMMUNOL, V153, P1789
  6. Franchi L, 2009, NAT IMMUNOL, V10, P241, DOI 10.1038/ni.1703
  7. Davis BK, 2011, ANNU REV IMMUNOL, V29, P707, DOI 10.1146/annurev-immunol-031210-101405
  8. Tamura M, 2009, HISTOCHEM CELL BIOL, V131, P483, DOI 10.1007/s00418-009-0557-5
  9. Johnson RJ, 2003, HYPERTENSION, V41, P1183, DOI 10.1161/01.HYP.0000069700.62727.C5
  10. Eleftheriadis Theodoros, 2009, Inflammation & Allergy Drug Targets, V8, P191
  11. Praga M, 2010, KIDNEY INT, V77, P956, DOI 10.1038/ki.2010.89
  12. Stockelman MG, 1998, AM J PHYSIOL-RENAL, V275, pF154
  13. Anders HJ, 2011, J AM SOC NEPHROL, V22, P1007, DOI 10.1681/ASN.2010080798
  14. Engle SJ, 1996, P NATL ACAD SCI USA, V93, P5307, DOI 10.1073/pnas.93.11.5307
  15. Anders HJ, 2004, J AM SOC NEPHROL, V15, P854, DOI 10.1097/01.ASN.0000121781.89599.16
  16. Taniguchi S, 2007, SEMIN IMMUNOPATHOL, V29, P231, DOI 10.1007/s00281-007-0082-3
  17. Gill PS, 2006, ANTIOXID REDOX SIGN, V8, P1597, DOI 10.1089/ars.2006.8.1597
  18. Anders HJ, 2010, J AM SOC NEPHROL, V21, P1270, DOI 10.1681/ASN.2010030233
  19. Pritsos CA, 2000, CHEM-BIOL INTERACT, V129, P195, DOI 10.1016/S0009-2797(00)00203-9
  20. Correa-Costa M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014298
  21. Lee Soo Bong, 2010, Kidney Int Suppl, pS22, DOI 10.1038/ki.2010.418