Fructose ingestion impairs expression of genes involved in skeletal muscle's adaptive response to aerobic exercise

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Citação
GENES AND NUTRITION, v.12, article ID 33, 12p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The inverse relationship between exercise capacity and its variation over time and both cardiovascular and all-cause mortality suggests the existence of an etiological nexus between cardiometabolic diseases and the molecular regulators of exercise capacity. Coordinated adaptive responses elicited by physical training enhance exercise performance and metabolic efficiency and possibly mediate the health benefits of physical exercise. In contrast, impaired expression of genes involved in mitochondrial biogenesis or protein turnover in skeletal muscle-key biological processes involved in adaptation to physical training-leads to insulin resistance and obesity. Ingestion of fructose has been shown to suppress the exercise-induced GLUT4 response in rat skeletal muscle. To evaluate in greater detail how fructose ingestion might blunt the benefits of physical training, we investigated the effects of fructose ingestion on exercise induction of genes that participate in regulation of mitochondrial biogenesis and protein turnover in rat's skeletal muscle. Methods: Eight-week-old Wistar rats were randomly assigned to sedentary (C), exercise (treadmill running)-only (E), fructose-only (F), and fructose + exercise (FE) groups and treated accordingly for 8 weeks. Blood and quadriceps femoris were collected for biochemistry, serum insulin, and gene expression analysis. Expression of genes involved in regulation of mitochondrial biogenesis and autophagy, GLUT4, and ubiquitin E3 ligases MuRF-1, and MAFbx/Atrogin-1 were assayed with quantitative real-time polymerase chain reaction. Results: Aerobic training improved exercise capacity in both E and FE groups. A main effect of fructose ingestion on body weight and fasting serum triglyceride concentration was detected. Fructose ingestion impaired the expression of PGC-1 alpha, FNDC5, NR4A3, GLUT4, Atg9, Lamp2, Ctsl, Murf-1, and MAFBx/Atrogin-1 in skeletal muscle of both sedentary and exercised animals while expression of Err alpha and Ppar delta was impaired only in exercised rats. Conclusions: Our results show that fructose ingestion impairs the expression of genes involved in biological processes relevant to exercise-induced remodeling of skeletal muscle. This might provide novel insight on how a dietary factor contributes to the genesis of disorders of glucose metabolism.
Palavras-chave
Fructose, Exercise training, Skeletal muscle, Protein turnover, PGC-1 alpha, Rats
Referências
  1. Adhihetty PJ, 2009, AM J PHYSIOL-CELL PH, V297, pC217, DOI 10.1152/ajpcell.00070.2009
  2. Bell RAV, 2016, SKELET MUSCLE, V6, DOI 10.1186/s13395-016-0086-6
  3. Bohm A, 2016, DIABETES, V65, P2849, DOI 10.2337/db15-1723
  4. Bollinger LM, 2015, OBESITY, V23, P1185, DOI 10.1002/oby.21081
  5. Booth FW, 2012, COMPR PHYSIOL, V2, P1143, DOI 10.1002/cphy.c110025
  6. Bostrom P, 2012, NATURE, V481, P463, DOI 10.1038/nature10777
  7. Champely S, 2017, PWR BASIC FUNCTIONS
  8. Codella R, 2015, J DIABETES RES, V2015
  9. Coen PM, 2013, J GERONTOL A-BIOL, V68, P447, DOI 10.1093/gerona/gls196
  10. Coffey VG, 2007, SPORTS MED, V37, P737, DOI 10.2165/00007256-200737090-00001
  11. Cohen J., 1988, STAT POWER ANAL BEHA
  12. CONOVER WJ, 1981, TECHNOMETRICS, V23, P351, DOI 10.2307/1268225
  13. de Lemos ET, 2011, MEDIAT INFLAMM, DOI 10.1155/2011/253061
  14. Elmore CJ, 2012, INVESTIGATING POTENT
  15. Finck BN, 2006, J CLIN INVEST, V116, P615, DOI 10.1172/JCI27794
  16. Gavin TP, 2005, J APPL PHYSIOL, V98, P315, DOI 10.1152/japplphysiol.00353.2004
  17. Geng TY, 2010, AM J PHYSIOL-CELL PH, V298, pC572, DOI 10.1152/ajpcell.00481.2009
  18. Goyaram V, 2014, AM J PHYSIOL-ENDOC M, V306, pE275, DOI 10.1152/ajpendo.00342.2013
  19. Gueugneau M, 2015, J GERONTOL A-BIOL, V70, P566, DOI 10.1093/gerona/glu086
  20. Hashimoto T, 2007, FASEB J, V21, P2602, DOI 10.1096/fj.07-8174com
  21. Hawley JA, 2014, CELL, V159, P738, DOI 10.1016/j.cell.2014.10.029
  22. He CC, 2012, NATURE, V481, P511, DOI 10.1038/nature10758
  23. Kitaoka Y, 2016, APPL PHYSIOL NUTR ME, V41, P695, DOI 10.1139/apnm-2016-0016
  24. Koch LG, 2008, OBESITY, V16, pS28, DOI 10.1038/oby.2008.513
  25. Koves TR, 2008, CELL METAB, V7, P45, DOI 10.1016/j.cmet.2007.10.013
  26. Laukkanen JA, 2016, MAYO CLIN PROC, V91, P1183, DOI 10.1016/j.mayocp.2016.05.014
  27. Leick L, 2008, AM J PHYSIOL-ENDOC M, V294, pE463, DOI 10.1152/ajpendo.00666.2007
  28. Liang HY, 2006, ADV PHYSIOL EDUC, V30, P145, DOI 10.1152/advan.00052.2006
  29. Lira VA, 2013, FASEB J, V27, P4184, DOI 10.1096/fj.13-228486
  30. Liu TT, 2009, CHINESE J PHYSIOL, V52, P65, DOI 10.4077/CJP.2009.AMH034
  31. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  32. Lu P, 2017, ANOVA MODELS
  33. Malenfant P, 2001, INT J OBESITY, V25, P1316, DOI 10.1038/sj.ijo.0801733
  34. Malik VS, 2015, J AM COLL CARDIOL, V66, P1615, DOI 10.1016/j.jacc.2015.08.025
  35. Mann N, 2012, CIRCULATION, V126, P2625, DOI 10.1161/CIRCULATIONAHA.111.060376
  36. Masiero E, 2009, CELL METAB, V10, P507, DOI 10.1016/j.cmet.2009.10.008
  37. MATTHEWS DR, 1985, DIABETOLOGIA, V28, P412, DOI 10.1007/BF00280883
  38. MAYES PA, 1993, AM J CLIN NUTR, V58, P754
  39. Mercken EM, 2012, AGEING RES REV, V11, P390, DOI 10.1016/j.arr.2011.11.005
  40. Murakami T, 1997, J APPL PHYSIOL, V82, P772
  41. Myers J, 2002, NEW ENGL J MED, V346, P793, DOI 10.1056/NEJMoa011858
  42. Olmos Y, 2009, J BIOL CHEM, V284, P14476, DOI 10.1074/jbc.M807397200
  43. Panchal SK, 2011, J CARDIOVASC PHARM, V57, P51, DOI [10.1097/FJC.0b013e3181feb90a, 10.1097/FJC.0b013e31821b1379]
  44. Petersen KF, 2004, NEW ENGL J MED, V350, P664, DOI 10.1056/NEJMoa031314
  45. Petersen KF, 2003, SCIENCE, V300, P1140, DOI 10.1126/science.1082889
  46. Philp A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077200
  47. Rosset R, 2017, EUR J SPORT SCI, V17, P874, DOI 10.1080/17461391.2017.1317035
  48. Rowe GC, 2013, CELL REP, V3, P1449, DOI 10.1016/j.celrep.2013.04.023
  49. Rutledge AC, 2007, NUTR REV, V65, pS13, DOI 10.1301/nr.2007.jun.S13-S23
  50. Scarpulla RC, 2011, BBA-MOL CELL RES, V1813, P1269, DOI 10.1016/j.bbamcr.2010.09.019
  51. Shaw AJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0123101
  52. Sun SZ, 2012, NUTR METAB, V9, DOI 10.1186/1743-7075-9-89
  53. Tanner CJ, 2002, AM J PHYSIOL-ENDOC M, V282, pE1191, DOI 10.1152/ajpendo.00416.2001
  54. Toledo AC, 2012, EUR RESPIR J, V39, P254, DOI 10.1183/09031936.00003411
  55. Wallace TM, 2004, DIABETES CARE, V27, P1487, DOI 10.2337/diacare.27.6.1487
  56. Wu H, 2002, SCIENCE, V296, P349, DOI 10.1126/science.1071163