Neolignans from leaves of Nectandra leucantha (Lauraceae) display in vitro antitrypanosomal activity via plasma membrane and mitochondrial damages

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Autores
GRECCO, Simone S.
COSTA-SILVA, Thais A.
JERZ, Gerold
SOUSA, Fernanda S. de
LONDERO, Vinicius S.
GALUPPO, Mariana K.
NEVES, Bruno J.
ANDRADE, Carolina H.
TEMPONE, Andre G.
Citação
CHEMICO-BIOLOGICAL INTERACTIONS, v.277, p.55-61, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Chagas disease is a neglected tropical disease, caused by the protozoan parasite Trypanosoma cruzi, which affects more than eight million people in Tropical and Subtropical countries especially in Latin America. Current treatment is limited to nifurtimox and benznidazole, both with reduced effectiveness and high toxicity. In this work, the n-hexane extract from leaves of Nectandra leucantha (Lauraceae) displayed in vitro antitrypanosomal activity against T. cruzi. Using several chromatographic steps, four related neolignans were isolated and chemically characterized as dehydrodieugenol B (1), 1-(8-propenyl)-3-[3'-methoxy-1'-(8-propenyl)-phenoxy]-4,5dimethoxybenzene (2), 1-[(7S)-hydroxy-8-propenyl]-3-[3'-methoxy-1'-(8'-propenyl)-phenoxy]-4hydroxy-5-methoxybenzene (3), and 1-[(7S)-hydroxy-8-propenyl]-3-[3'-methoxy-1'-(8'-propenyl)-phenoxy]-4,5-dimethoxybenzene (4). These compounds were tested against intracellular amastigotes and extracellular trypomastigotes of T. cruzi and for mammalian cytotoxicity. Neolignan 4 showed the higher selectivity index (SI) against trypomastigotes (>5) and amastigotes (>13) of T. cruzi. The investigation of the mechanism of action demonstrated that neolignan 4 caused substantial alteration of the plasma membrane permeability, together with mitochondrial dysfunctions in trypomastigote forms. In silico studies of pharmacokinetics and toxicity (ADMET) properties predicted that all compounds were non-mutagenic, non-carcinogenic, non-genotoxic, weak hERG blockers, with acceptable volume of distribution (1.66-3.32 L/kg), and low rodent oral toxicity (LD50 810-e2200 mg/kg). Considering some clinical events of cerebral Chagas disease, the compounds also demonstrated favorable properties, such as blood-brain barrier penetration. Unfavorable properties were also predicted as high promiscuity for P450 isoforms, high plasma protein binding affinity (>91%), and moderate-to-low oral bioavailability. Finally, none of the isolated neolignans was predicted as interference compounds (PAINS). Considering the promising chemical and biological properties of the isolated neolignans, these compounds could be used as starting points to develop new lead compounds for Chagas disease.
Palavras-chave
Nectandra leucantha, Neolignans, Trypanosoma cruzi, Plasma membrane permeability, Mitochondrial dysfunctions, ADMET
Referências
  1. Andrade CH, 2014, CURR DRUG METAB, V15, P514, DOI 10.2174/1389200215666140908102530
  2. Baell J, 2014, NATURE, V513, P481, DOI 10.1038/513481a
  3. Baell JB, 2010, J MED CHEM, V53, P2719, DOI 10.1021/jm901137j
  4. Braga R.C., 2015, ENCY DRUG METABOLISM, P1
  5. Braga RC, 2015, MOL INFORM, V34, P698, DOI 10.1002/minf.201500040
  6. Braga RC, 2014, CURR TOP MED CHEM, V14, P1399, DOI 10.2174/1568026614666140506124442
  7. Broccatelli F, 2011, J MED CHEM, V54, P1740, DOI 10.1021/jm101421d
  8. Cheng FX, 2012, J CHEM INF MODEL, V52, P3099, DOI 10.1021/ci300367a
  9. Cicora F, 2014, TRANSPL INFECT DIS, V16, P813, DOI 10.1111/tid.12265
  10. Costa EC, 2016, MOLECULES, V21, DOI 10.3390/molecules21060802
  11. da Costa-Silva TA, 2015, J NAT PROD, V78, P653, DOI 10.1021/np500809a
  12. Oliveira LGD, 2017, BASIC CLIN PHARMACOL, V120, P52, DOI 10.1111/bcpt.12639
  13. de Sousa FS, 2017, PHYTOCHEMISTRY, V140, P108, DOI 10.1016/j.phytochem.2017.04.024
  14. DIAS AD, 1988, PHYTOCHEMISTRY, V27, P3008
  15. Diaz A.M.P., 1980, PHYTOCHEMISTRY, V19, P681
  16. Drwal MN, 2014, NUCLEIC ACIDS RES, V42, pW53, DOI 10.1093/nar/gku401
  17. Ellis D, 2002, J ANTIMICROB CHEMOTH, V49, P7, DOI 10.1093/jac/49.suppl_1.7
  18. Esperandim VR, 2013, EXP PARASITOL, V133, P442, DOI 10.1016/j.exppara.2012.12.005
  19. Grecco SS, 2017, PHYTOMEDICINE, V24, P62, DOI 10.1016/j.phymed.2016.11.015
  20. Hansen K, 2009, J CHEM INF MODEL, V49, P2077, DOI 10.1021/ci900161g
  21. Irwin JJ, 2015, J MED CHEM, V58, P7076, DOI 10.1021/acs.jmedchem.5b01105
  22. Lagunin A, 2009, QSAR COMB SCI, V28, P806, DOI 10.1002/qsar.200860192
  23. Martins LF, 2016, J NAT PROD, V79, P2202, DOI 10.1021/acs.jnatprod.6b00256
  24. Martins S.C., 2016, MICROBES INFECT, pS1286
  25. MORGAN HL, 1965, J CHEM DOC, V5, P107, DOI 10.1021/c160017a018
  26. Neris PLN, 2013, EXP PARASITOL, V135, P307, DOI 10.1016/j.exppara.2013.07.007
  27. Pelizzaro-Rocha KJ, 2011, MICROBES INFECT, V13, P1018, DOI 10.1016/j.micinf.2011.05.011
  28. Perry SW, 2011, BIOTECHNIQUES, V50, P98, DOI 10.2144/000113610
  29. Pinto EG, 2013, EXP PARASITOL, V135, P655, DOI 10.1016/j.exppara.2013.09.016
  30. Riniker S, 2013, J CHEMINFORMATICS, V5, DOI 10.1186/1758-2946-5-26
  31. Rogers D, 2010, J CHEM INF MODEL, V50, P742, DOI 10.1021/ci100050t
  32. Luque-Ortega JR, 2010, METHODS MOL BIOL, V618, P393, DOI 10.1007/978-1-60761-594-1_25
  33. Sartorelli P, 2010, PLANTA MED, V76, P1454, DOI 10.1055/s-0029-1240952
  34. Saubern S, 2011, MOL INFORM, V30, P847, DOI 10.1002/minf.201100076
  35. SUAREZ M, 1983, PHYTOCHEMISTRY, V22, P609, DOI 10.1016/0031-9422(83)83066-0
  36. Tasdemir D, 2006, ANTIMICROB AGENTS CH, V50, P1352, DOI 10.1128/AAC.50.4.1352-1364.2006
  37. van de Waterbeemd H, 2003, NAT REV DRUG DISCOV, V2, P192, DOI 10.1038/nrd1032
  38. Vial HJ, 2003, MOL BIOCHEM PARASIT, V126, P143, DOI 10.1016/S0166-6851(02)00281-5
  39. Volpato H, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130652