Oncogenic drivers in 11q13 associated with prognosis and response to therapy in advanced oropharyngeal carcinomas

Carregando...
Imagem de Miniatura
Citações na Scopus
19
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Autores
BARROS-FILHO, M. C.
HATAKEYAMA, M.
MARCHI, F. A.
CHULAM, T.
SCAPULATEMPO-NETO, C.
NICOLAU, U. R.
CARVALHO, A. L.
PINTO, C. A. L.
DRIGO, S. A.
Citação
ORAL ONCOLOGY, v.83, p.81-90, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: To identify potential molecular drivers associated with prognosis and response to treatment in advanced oropharyngeal squamous cell carcinomas (OPSCC). Materials and methods: Thirty-three OPSCC biopsies from untreated Brazilian patients were evaluated for human papilloma virus genotyping, genome wide copy number alterations and gene expression profiling. Data were integrated using CONEXIC algorithm. Validation with TCGA dataset and confirmation by RT-qPCR of candidate genes were performed. Results: High-risk HPV positive cases, detected in 55% of advanced OPSCC, were associated with better outcome. Losses of 8p11.23-p11.22, 14q11.1-q11.2 and 15q11.2, and gains of 11q13.2 and 11q13.2-q13.3 were detected as recurrent alterations. Gains of 3q26.31 and 11q13.2 and losses of 9p21.3 were exclusively detected in HPV-negative tumors. Two clusters of expression profiles were observed, being one composed mostly by HPV positive cases (83%). HPV-positive enriched cluster showed predominantly immune response-related pathways. Integrative analysis identified 10 modulators mapped in 11q13, which were frequently cancer-related. These 10 genes showed copy number gains, overexpression and an association with worse survival, further validated by TCGA database analyses. Overexpression of four genes (ORAOV1, CPT1A, SHANK2 and PPFIA1) evaluated by RT-qPCR confirmed their association with poor survival. Multivariate analysis showed that PPFIA1 overexpression and HPV status are independent prognostic markers. Moreover, SHANK2 overexpression was significantly associated with incomplete response to treatment. Conclusion: The integrative genomic and transcriptomic data revealed potential driver genes mapped in 11q13 associated with worse prognosis and response to treatment, giving fundamentals for the identification of novel therapeutic targets in OPSCC.
Palavras-chave
Oropharyngeal cancer, Driver alterations, Human papilloma virus, Prognostic factors, Predictive factors, Transcriptome profiling, Array comparative genomic hybridization, Reverse transcriptase polymerase chain reaction
Referências
  1. Akavia UD, 2010, CELL, V143, P1005, DOI 10.1016/j.cell.2010.11.013
  2. Ambatipudi S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017250
  3. Ambrosio EP, 2013, TUMOR BIOL, V34, P3015, DOI 10.1007/s13277-013-0866-0
  4. Anantharaman D, 2017, INT J CANCER, V140, P1968, DOI 10.1002/ijc.30608
  5. Ang KK, 2010, NEW ENGL J MED, V363, P24, DOI 10.1056/NEJMoa0912217
  6. Astro V, 2011, ONCOGENE, V30, P1841, DOI 10.1038/onc.2010.562
  7. Boscolo-Rizzo P, 2017, CLIN EPIGENETICS, V9, DOI 10.1186/s13148-017-0424-5
  8. Busso-Lopes AF, 2015, CANCER PREV RES, V8, P149, DOI 10.1158/1940-6207.CAPR-14-0284
  9. Carracedo A, 2013, NAT REV CANCER, V13, P227, DOI 10.1038/nrc3483
  10. Chaturvedi AK, 2013, J CLIN ONCOL, V31, P4550, DOI 10.1200/JCO.2013.50.3870
  11. Chera BS, 2018, SEMIN RADIAT ONCOL, V28, P27, DOI 10.1016/j.semradonc.2017.08.001
  12. Choudhari SK, 2014, ORAL ONCOL, V50, P10, DOI 10.1016/j.oraloncology.2013.09.011
  13. Chudasama P, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02602-0
  14. D'Souza G, 2017, JAMA ONCOL, V3, P169, DOI 10.1001/jamaoncol.2016.3067
  15. de Martel C, 2017, INT J CANCER, V141, P664, DOI 10.1002/ijc.30716
  16. Etemadmoghadam D, 2009, CLIN CANCER RES, V15, P1417, DOI 10.1158/1078-0432.CCR-08-1564
  17. Fakhry C, 2017, CANCER-AM CANCER SOC, V123, P1566, DOI 10.1002/cncr.30353
  18. Fischer CA, 2010, INT J CANCER, V126, P1256, DOI 10.1002/ijc.24842
  19. Freier K, 2006, GENE CHROMOSOME CANC, V45, P118, DOI 10.1002/gcc.20270
  20. Gotwals P, 2017, NAT REV CANCER, V17, P286, DOI 10.1038/nrc.2017.17
  21. Hussein AA, 2017, EUR J CANCER, V82, P115, DOI 10.1016/j.ejca.2017.05.026
  22. Jiang L, 2008, INT J CANCER, V123, P1779, DOI 10.1002/ijc.23734
  23. Jiang L, 2010, MOL CANCER, V9, DOI 10.1186/1476-4598-9-20
  24. Johnson DB, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10582
  25. Jung AC, 2010, INT J CANCER, V126, P1882, DOI 10.1002/ijc.24911
  26. Kang H, 2015, NAT REV CLIN ONCOL, V12, P11, DOI 10.1038/nrclinonc.2014.192
  27. Kansy BA, 2017, CANCER RES, V77, P6353, DOI 10.1158/0008-5472.CAN-16-3167
  28. Kennedy JA, 1996, BIOCHEM PHARMACOL, V52, P273, DOI 10.1016/0006-2952(96)00204-3
  29. Klussmann JP, 2009, CLIN CANCER RES, V15, P1779, DOI 10.1158/1078-0432.CCR-08-1463
  30. Lawrence MS, 2015, NATURE, V517, P576, DOI 10.1038/nature14129
  31. Leemans CR, 2018, NAT REV CANCER, V18, P269, DOI 10.1038/nrc.2018.11
  32. Li M, 2015, HUM PATHOL, V46, P707, DOI 10.1016/j.humpath.2015.01.009
  33. Lindel K, 2001, CANCER-AM CANCER SOC, V92, P805, DOI 10.1002/1097-0142(20010815)92:4<805::AID-CNCR1386>3.0.CO;2-9
  34. Lyford-Pike S, 2013, CANCER RES, V73, P1733, DOI 10.1158/0008-5472.CAN-12-2384
  35. Marchi FA, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-06659-1
  36. MEREDITH SD, 1995, ARCH OTOLARYNGOL, V121, P790
  37. Morris LGT, 2017, JAMA ONCOL, V3, P244, DOI 10.1001/jamaoncol.2016.1790
  38. O'Sullivan B, 2013, J CLIN ONCOL, V31, P543, DOI 10.1200/JCO.2012.44.0164
  39. Panwar A, 2014, CANCER TREAT REV, V40, P215, DOI 10.1016/j.ctrv.2013.09.006
  40. Papillon-Cavanagh S, 2017, NAT GENET, V49, P180, DOI 10.1038/ng.3757
  41. Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45
  42. Pickering CR, 2013, CANCER DISCOV, V3, P770, DOI 10.1158/2159-8290.CD-12-0537
  43. Psyrri A, 2014, ANN ONCOL, V25, P2101, DOI 10.1093/annonc/mdu265
  44. Qin HD, 2016, AM J HUM GENET, V98, P709, DOI 10.1016/j.ajhg.2016.02.021
  45. Ragin CCR, 2006, BRIT J CANCER, V95, P1432, DOI 10.1038/sj.bjc.6603394
  46. Cirilo PDR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057901
  47. Reddy RB, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0147409
  48. Seiwert TY, 2015, CLIN CANCER RES, V21, P632, DOI 10.1158/1078-0432.CCR-13-3310
  49. Shen SP, 2017, CLIN EPIGENETICS, V9, DOI 10.1186/s13148-017-0392-9
  50. Shi ZZ, 2011, GENE CHROMOSOME CANC, V50, P518, DOI 10.1002/gcc.20875
  51. Shield KD, 2017, CA-CANCER J CLIN, V67, P51, DOI 10.3322/caac.21384
  52. Simard EP, 2014, ORAL ONCOL, V50, P387, DOI 10.1016/j.oraloncology.2014.01.016
  53. St Guily JL, 2017, ORAL ONCOL, V67, P29, DOI 10.1016/j.oraloncology.2017.01.012
  54. Tan KD, 2008, GENE CHROMOSOME CANC, V47, P353, DOI 10.1002/gcc.20539
  55. Urban D, 2014, CANCER-AM CANCER SOC, V120, P1462, DOI 10.1002/cncr.28595
  56. Vandesompele J, 2002, GENOME BIOL, V3, DOI 10.1186/gb-2002-3-7-research0034
  57. Wilkerson PM, 2013, GENE CHROMOSOME CANC, V52, P333, DOI 10.1002/gcc.22037
  58. Xu C, 2010, MOL CANCER, V9, DOI 10.1186/1476-4598-9-143
  59. Zhai C, 2014, ONCOGENE, V33, P484, DOI 10.1038/onc.2012.604