Omega-3 PUFA modulate lipogenesis, ER stress, and mitochondrial dysfunction markers in NASH - Proteomic and lipidomic insight

Carregando...
Imagem de Miniatura
Citações na Scopus
64
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
CHURCHILL LIVINGSTONE
Autores
NOGUEIRA, Monize Aydar
SILVA, Ismael Dale Cotrim Guerreiro da
CORDEIRO, Fernanda Bertucce
PURI, Puneet
Citação
CLINICAL NUTRITION, v.37, n.5, p.1474-1484, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background & aims: Currently there is no FDA-approved therapy for nonalcoholic steatohepatitis (NASH). Increased n-6/n-3 polyunsaturated fatty acids (PUFA) ratio can induce endoplasmic reticulum (ER) stress and mitochondrial dysfunction that characterize NASH. Our recent study with n-3 PUFA showed improvement in individual histologic parameters like steatosis, ballooning and lobular inflammation. We hypothesized that n-3 PUFA therapy mediated improvement in histologic parameters is modulated by lipidomic and proteomic changes. Methods: We therefore evaluated hepatic proteomic and plasma lipidomic profiles before and after n-3 PUFA therapy in subjects with NASH. In a double-blind, randomized, placebo-controlled trial, patients with NASH received 6-month treatment with n-3 PUFA (0.945 g/day [64% alpha-linolenic (ALA), 21% eicosapentaenoic (EPA), and 16% docosahexaenoic (DHA) acids]). Paired liver biopsy and plasma collected before and after-n-3 PUFA therapy were assessed using mass spectrometry and gas chromatography for hepatic proteomics and plasma lipidomics. Data were matched to UniProt and LIPID MAPS database, respectively. Cytoscape software was used to analyze functional pathways. Twenty-seven NASH patients with paired liver histology and plasma before and after n-3 PUFA treatment were studied. Results: Treatment with n-3 PUFA significantly increased ALA, EPA, and glycerophospholipids, and decreased arachidonic acid (p < 0.05 for all). Further, proteomic markers of cell matrix, lipid metabolism, ER stress and cellular respiratory pathways were also modulated. Interestingly, these alterations reflected functional changes highly suggestive of decreased cellular lipotoxicity potential; reduced ER proteasome degradation of proteins and induction of chaperones; and a shift in cell energy homeostasis towards mitochondrial beta-oxidation. Conclusion: Six-month treatment with omega-3 PUFAs significantly improved hepatic proteomic and plasma lipidomic markers of lipogenesis, endoplasmic reticulum stress and mitochondrial functions in patients with NASH.
Palavras-chave
Omega-3 PUFA, NASH, Proteomic, Lipidomic, Mitochondrial dysfunction, Endoplasmic reticulum stress
Referências
  1. Berlanga A, 2014, CLIN EXP GASTROENTER, V7, P221, DOI 10.2147/CEG.S62831
  2. Betz C, 2013, P NATL ACAD SCI USA, V110, P12526, DOI 10.1073/pnas.1302455110
  3. Bravo R, 2013, INT REV CEL MOL BIO, V301, P215, DOI 10.1016/B978-0-12-407704-1.00005-1
  4. Brunt EM, 2011, HEPATOLOGY, V53, P810, DOI 10.1002/hep.24127
  5. Calder PC, 2003, BRAZ J MED BIOL RES, V36, P433, DOI 10.1590/S0100-879X2003000400004
  6. Capanni M, 2006, ALIMENT PHARM THERAP, V23, P1143, DOI 10.1111/j.1365-2036.2006.02885.x
  7. Charlton M, 2009, HEPATOLOGY, V49, P1375, DOI 10.1002/hep.22927
  8. Chen JW, 2000, J BIOL CHEM, V275, P28421, DOI 10.1074/jbc.M005073200
  9. Cheng LC, 2015, MOL CELL ENDOCRINOL, V412, P12, DOI 10.1016/j.mce.2015.04.025
  10. Christoffersen C, 2011, P NATL ACAD SCI USA, V108, P9613, DOI 10.1073/pnas.1103187108
  11. Dasarathy S, 2015, J CLIN GASTROENTEROL, V49, P137, DOI 10.1097/MCG.0000000000000099
  12. Guzman C, 2013, BBA-MOL CELL BIOL L, V1831, P803, DOI 10.1016/j.bbalip.2012.12.014
  13. Hardie DG, 2012, NAT REV MOL CELL BIO, V13, P251, DOI 10.1038/nrm3311
  14. Jump DB, 2008, CHEM PHYS LIPIDS, V153, P3, DOI 10.1016/j.chemphyslip.2008.02.007
  15. Kainu V, 2008, J BIOL CHEM, V283, P3676, DOI 10.1074/jbc.M709176200
  16. Kleiner DE, 2005, HEPATOLOGY, V41, P1313, DOI 10.1002/hep.20701
  17. Bargut TCL, 2014, LIPIDS, V49, P431, DOI 10.1007/s11745-014-3892-9
  18. Ma DWL, 2004, FASEB J, V18, P1040, DOI 10.1096/fj.03-1430fje
  19. Masterton GS, 2010, ALIMENT PHARM THER, V31, P679, DOI 10.1111/j.1365-2036.2010.04230.x
  20. McPherson S, 2015, J HEPATOL, V62, P1148, DOI 10.1016/j.jhep.2014.11.034
  21. Muir K, 2013, CANCER RES, V73, P4722, DOI 10.1158/0008-5472.CAN-12-3797
  22. Nogueira MA, 2016, CLIN NUTR, V35, P578, DOI 10.1016/j.clnu.2015.05.001
  23. Pais R, 2013, J HEPATOL, V59, P550, DOI 10.1016/j.jhep.2013.04.027
  24. Parker HM, 2012, J HEPATOL, V56, P944, DOI 10.1016/j.jhep.2011.08.018
  25. Pfaffenbach KT, 2010, AM J PHYSIOL-ENDOC M, V298, pE1027, DOI 10.1152/ajpendo.00642.2009
  26. POWELL EE, 1990, HEPATOLOGY, V11, P74, DOI 10.1002/hep.1840110114
  27. Puri P, 2007, HEPATOLOGY, V46, P1081, DOI 10.1002/hep.21763
  28. RUSINOL AE, 1994, J BIOL CHEM, V269, P27494
  29. Sanyal AJ, 2014, GASTROENTEROLOGY, V147, P377, DOI 10.1053/j.gastro.2014.04.046
  30. Tang HH, 2010, FEBS LETT, V584, P662, DOI 10.1016/j.febslet.2009.12.051
  31. Wang D, 2006, ENDOCRINOLOGY, V147, P943, DOI [10.1210/en.2006-0138, 10.1210/en.2005-0570]
  32. Wang GQ, 2005, HEPATOLOGY, V42, P871, DOI 10.1002/hep.20857
  33. Yahagi N, 1999, J BIOL CHEM, V274, P35840, DOI 10.1074/jbc.274.50.35840
  34. Yoshikawa T, 2002, J BIOL CHEM, V277, P1705, DOI 10.1074/jbc.M105711200
  35. Younossi ZM, 2008, OBES SURG, V18, P1430, DOI 10.1007/s11695-008-9506-y
  36. Younossi ZM, 2010, J PROTEOME RES, V9, P3218, DOI 10.1021/pr100069e
  37. Zhao JM, 2011, P NATL ACAD SCI USA, V108, P14246, DOI 10.1073/pnas.1018075108