Breathing responses produced by optogenetic stimulation of adrenergic C1 neurons are dependent on the connection with preBotzinger complex in rats

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER HEIDELBERG
Autores
MALHEIROS-LIMA, Milene R.
TOTOLA, Leonardo T.
TAKAKURA, Ana C.
MOREIRA, Thiago S.
Citação
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, v.470, n.11, p.1659-1672, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Optogenetic stimulation of the adrenergic C1 neurons produces cardiorespiratory activation, and selective depletion of these cells attenuates breathing responses induced by hypoxia. The preBotzinger complex (preBotC) is a group of neurons located in the intermediate aspect of the ventrolateral medulla, critical for respiratory rhythmogenesis, and is modulated by glutamate and catecholamines. Our hypothesis is that selective activation of C1 neurons leads to breathing responses by excitatory connections with the preBotC neurons. Anatomical connection between C1 cells and preBotC was evaluated using retrograde (Cholera Toxin b; preBotC) and anterograde (LVV-PRSx8-ChR2-eYFP; C1 region) tracers. LVV-PRSx8-ChR2-eYFP (viral vector that expresses channelrhodopsin-2 (ChR2) under the control of the catecholaminergic neuron-preferring promoter (PRSx8) was also injected into the C1 region of male Wistar rats for the functional experiments. Anatomical results demonstrated that preBotC neurons receive projections from C1 cells, and these projections express tyrosine hydroxylase and vesicular glutamate transporter 2. Functional connection between C1 cells and preBotC was evaluated by photostimulation of ChR2-transduced C1 neurons before and after unilateral injection of the ionotropic glutamate antagonist, kynurenic acid (kyn), or cocktail of adrenergic antagonists in the preBotC. Kyn injection into preBotC blocked the increase in Dia(EMG) frequency without changing the MAP increase elicited by photostimulation of C1 neurons, while the injection of adrenergic antagonists into the preBotC did not change Dia(EMG) frequency and MAP increase induced by photostimulation of C1 cells. Our results suggest that the increase in breathing produced by photostimulation of C1 neurons can be caused by a direct glutamatergic activation of preBotC neurons.
Palavras-chave
Catecholamines, Glutamate, Hypoxia, Optogenetics, Rostroventrolateral medulla, Ventilation
Referências
  1. Abbott SB, 2012, J PHYSIOL-LONDON, V590, P2897, DOI 10.1113/jphysiol.2012.232157
  2. Abbott SBG, 2014, EUR J NEUROSCI, V39, P98, DOI 10.1111/ejn.12421
  3. Abbott SBG, 2013, J NEUROSCI, V33, P3164, DOI 10.1523/JNEUROSCI.1046-12.2013
  4. Abbott SBG, 2009, J PHYSIOL-LONDON, V587, P5613, DOI 10.1113/jphysiol.2009.177535
  5. Abbott SBG, 2009, J NEUROSCI, V29, P5806, DOI 10.1523/JNEUROSCI.1106-09.2009
  6. Abe C, 2017, NAT NEUROSCI, V20, P700, DOI 10.1038/nn.4526
  7. Agassandian K, 2012, NEUROSCIENCE, V227, P247, DOI 10.1016/j.neuroscience.2012.09.049
  8. Bruinstroop E, 2012, J COMP NEUROL, V520, P1985, DOI 10.1002/cne.23024
  9. Burke PGR, 2014, AM J RESP CRIT CARE, V190, P1301, DOI 10.1164/rccm.201407-1262OC
  10. Card JP, 2006, J COMP NEUROL, V499, P840, DOI 10.1002/cne.21140
  11. Depuy SD, 2013, J NEUROSCI, V33, P1486, DOI 10.1523/JNEUROSCI.4269-12.2013
  12. Depuy SD, 2011, J NEUROSCI, V31, P1981, DOI 10.1523/JNEUROSCI.4639-10.2011
  13. Doi A, 2010, J NEUROSCI, V30, P8251, DOI 10.1523/JNEUROSCI.5361-09.2010
  14. Doi A, 2008, RESP PHYSIOL NEUROBI, V164, P96, DOI 10.1016/j.resp.2008.06.007
  15. ELLENBERGER HH, 1990, J COMP NEUROL, V294, P212, DOI 10.1002/cne.902940206
  16. Feldman JL, 2006, NAT REV NEUROSCI, V7, P232, DOI 10.1038/nrn1871
  17. Gray PA, 2001, NAT NEUROSCI, V4, P927, DOI 10.1038/nn0901-927
  18. Gray PA, 1999, SCIENCE, V286, P1566, DOI 10.1126/science.286.5444.1566
  19. Guyenet PG, 2013, AM J PHYSIOL-REG I, V305, pR187, DOI 10.1152/ajpregu.00054.2013
  20. Guyenet PG, 2002, J NEUROSCI, V22, P3806
  21. Guyenet PG, 2001, J NEUROPHYSIOL, V86, P438
  22. Hilaire G, 2004, RESP PHYSIOL NEUROBI, V143, P187, DOI 10.1016/j.resp.2004.04.016
  23. Hodges MR, 2010, RESP PHYSIOL NEUROBI, V173, P256, DOI 10.1016/j.resp.2010.03.006
  24. HOKFELT T, 1974, BRAIN RES, V66, P235, DOI 10.1016/0006-8993(74)90143-7
  25. Holloway BB, 2015, EUR J NEUROSCI, V42, P2271, DOI 10.1111/ejn.12996
  26. Holloway BB, 2013, J NEUROSCI, V33, P18792, DOI 10.1523/JNEUROSCI.2916-13.2013
  27. Hwang DY, 2001, HUM GENE THER, V12, P1731, DOI 10.1089/104303401750476230
  28. Janczewski WA, 2013, J NEUROSCI, V33, P5454, DOI 10.1523/JNEUROSCI.1595-12.2013
  29. Kanbar R, 2010, AM J RESP CRIT CARE, V182, P1184, DOI 10.1164/rccm.201001-0047OC
  30. Kang JJ, 2017, EXP NEUROL, V287, P165, DOI 10.1016/j.expneurol.2016.05.035
  31. King TL, 2015, AM J PHYSIOL-REG I, V309, pR721, DOI 10.1152/ajpregu.00540.2014
  32. KOSHIYA N, 1993, BRAIN RES, V609, P174, DOI 10.1016/0006-8993(93)90871-J
  33. Kubin L, 2006, J APPL PHYSIOL, V101, P618, DOI 10.1152/japplphysiol.00252.2006
  34. Malheiros-Lima MR, 2017, NEUROSCIENCE, V351, P1, DOI 10.1016/j.neuroscience.2017.03.031
  35. Mckay LC, 2008, AM J RESP CRIT CARE, V178, P89, DOI 10.1164/rccm.200712-1901OC
  36. Menuet C, 2017, CELL METAB, V25, P739, DOI 10.1016/j.cmet.2017.01.019
  37. Moraes DJA, 2012, J NEUROPHYSIOL, V108, P610, DOI 10.1152/jn.00057.2012
  38. Moreira TS, 2005, AM J PHYSIOL-REG I, V289, pR1416, DOI 10.1152/ajpregu.00053.2005
  39. Oliveira LM, 2016, J NEUROPHYSIOL, V116, P1036, DOI 10.1152/jn.00023.2016
  40. Paxinos G, 2007, RAT BRAIN STEREOTAXI
  41. Phillips JK, 2001, J COMP NEUROL, V432, P20, DOI 10.1002/cne.1086
  42. PILOWSKY PM, 1990, J COMP NEUROL, V301, P604, DOI 10.1002/cne.903010409
  43. Ramirez JM, 2014, PROG BRAIN RES, V209, P91, DOI 10.1016/B978-0-444-63274-6.00006-0
  44. Ramirez JM, 1996, CURR OPIN NEUROBIOL, V6, P817, DOI 10.1016/S0959-4388(96)80033-X
  45. Schreihofer AM, 1997, FASEB J, V11, P99
  46. Schwarzacher SW, 2011, BRAIN, V134, P24, DOI 10.1093/brain/awq327
  47. Silva TM, 2016, EXP NEUROL, V285, P1, DOI 10.1016/j.expneurol.2016.08.016
  48. SMITH JC, 1991, SCIENCE, V254, P726, DOI 10.1126/science.1683005
  49. Smith JC, 2013, TRENDS NEUROSCI, V36, P152, DOI 10.1016/j.tins.2012.11.004
  50. Solomon IC, 1999, J NEUROPHYSIOL, V81, P1150
  51. Stornetta RL, 1999, J COMP NEUROL, V415, P482, DOI 10.1002/(SICI)1096-9861(19991227)415:4<482::AID-CNE5>3.0.CO;2-4
  52. Stornetta RL, 2002, J COMP NEUROL, V444, P191, DOI 10.1002/cne.10141
  53. Stornetta RL, 2006, J NEUROSCI, V26, P10305, DOI 10.1523/JNEUROSCI.2917-06.2006
  54. Stornetta RL, 2016, BRAIN STRUCT FUNCT, V221, P4027, DOI 10.1007/s00429-015-1143-3
  55. Stornetta RL, 2009, J CHEM NEUROANAT, V38, P222, DOI 10.1016/j.jchemneu.2009.07.005
  56. Takakura ACT, 2006, J PHYSIOL-LONDON, V572, P503, DOI 10.1113/jphysiol.2005.103788
  57. Viemari JC, 2006, J NEUROPHYSIOL, V95, P2070, DOI 10.1152/jn.01308.2005
  58. Viemari JC, 2013, FRONT NEURAL CIRCUIT, V7, DOI 10.3389/fncir.2013.00179
  59. Viemari JC, 2008, RESP PHYSIOL NEUROBI, V164, P123, DOI 10.1016/j.resp.2008.06.016
  60. Wenker IC, 2017, J NEUROSCI, V37, P4565, DOI 10.1523/JNEUROSCI.3922-16.2017