Motor improvement requires an increase in presynaptic protein expression and depends on exercise type and age

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Autores
GUTIERREZ, Rita Mara Soares
SCARANZI, Catharine Ranieri
GARCIA, Priscila Crespo
OLIVEIRA, Dalton Lustosa
BRITTO, Luiz Roberto
PIRES, Raquel Simoni
Citação
EXPERIMENTAL GERONTOLOGY, v.113, p.18-28, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The aging process is associated with structural and functional changes in the nervous system. Considering that exercise can improve the quality of life of the elderly, the aim of this study was to evaluate the effects of exercise protocols with different motor demands on synaptic protein expression (i. e., synapsin-I and synaptophysin). Cognitive and motor brain areas and the motor performance of adult and aged animals were analyzed. Adult (7 months old) and aged (18 months old) male Wistar rats were used. Animals were divided into the following groups: treadmill exercise (TE, rhythmic motor activity), acrobatic exercise (AE, complex motor activity) and sedentary (SED, control). The animals were exposed to exercise 3 times per week for 8 weeks. The brains were collected for immunohistochemistry and immunoblotting assays. Our results showed that both types of exercise induced changes in motor performance and synaptic protein expression in adult and aged animals. However, acrobatic exercise promoted a greater number of changes, mainly in the aged animals. In addition, protein expression changes occurred in a greater number of brain areas in the aged animals than in adult animals. There were clear increases in synapsin-I expression in all areas analyzed of aged animals only after acrobatic exercises. On the other hand, synaptophysin increased in the same areas but with both types of exercise. Thus, in general, our data suggest that even at advanced ages, when the aging process is already in progress, initiating physical training may be beneficial to generate neuroplasticity that can improve motor performance.
Palavras-chave
Aging, Neuroplasticity, Acrobatic exercise, Treadmill exercise, Synapsin-I, Synaptophysin
Referências
  1. Aguiar AS, 2011, MECH AGEING DEV, V132, P560, DOI 10.1016/j.mad.2011.09.005
  2. Albeck DS, 2006, BEHAV BRAIN RES, V168, P345, DOI 10.1016/j.bbr.2005.11.008
  3. Arida RM, 2011, AM J PHYS MED REHAB, V90, P452, DOI 10.1097/PHM.0b013e3182063a9c
  4. Best JR, 2017, J GERONTOL A-BIOL, V72, P804, DOI 10.1093/gerona/glx043
  5. Borisova T, 2016, REV NEUROSCIENCE, V27, P377, DOI 10.1515/revneuro-2015-0044
  6. Brockett AT, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124859
  7. Burke SN, 2006, NAT REV NEUROSCI, V7, P30, DOI 10.1038/nrn1809
  8. Campos LA, 2006, AM J PHYSIOL-REG I, V290, pR1122, DOI 10.1152/ajpregu.00703.2005
  9. Felix JVC, 2007, HYPERTENSION, V50, P780, DOI 10.1161/HYPERTENSIONAHA.107.094474
  10. CHENEY PD, 1985, PHYS THER, V65, P624, DOI 10.1093/ptj/65.5.624
  11. Colcombe SJ, 2006, J GERONTOL A-BIOL, V61, P1166, DOI 10.1093/gerona/61.11.1166
  12. Darmopil S, 2009, J CELL MOL MED, V13, P1845, DOI 10.1111/j.1582-4934.2008.00560.x
  13. Dickstein DL, 2013, NEUROSCIENCE, V251, P21, DOI 10.1016/j.neuroscience.2012.09.077
  14. Doyon J, 2011, M S-MED SCI, V27, P413, DOI 10.1051/medsci/2011274018
  15. Ferreira AFB, 2010, BRAIN RES, V1361, P31, DOI 10.1016/j.brainres.2010.09.045
  16. Garcia PC, 2012, BRAIN RES, V1456, P36, DOI 10.1016/j.brainres.2012.03.059
  17. Grillner S, 2005, TRENDS NEUROSCI, V28, P364, DOI 10.1016/j.tins.2005.05.004
  18. Guadagnin EC, 2016, ARCH GERONTOL GERIAT, V64, P138, DOI 10.1016/j.archger.2016.02.008
  19. Gutierrez RMS, 2018, BRAIN STRUCT FUNCT, V223, P2055, DOI 10.1007/s00429-018-1631-3
  20. Henley Jeremy M, 2013, Dialogues Clin Neurosci, V15, P11
  21. Heuninckx S, 2005, J NEUROSCI, V25, P6787, DOI 10.1523/JNEUROSCI.1263-05.2005
  22. Hikosaka O, 2002, CURR OPIN NEUROBIOL, V12, P217, DOI 10.1016/S0959-4388(02)00307-0
  23. Hof PR, 2002, BRAIN RES, V928, P175, DOI 10.1016/S0006-8993(01)03345-5
  24. Hoover WB, 2007, BRAIN STRUCT FUNCT, V212, P149, DOI 10.1007/s00429-007-0150-4
  25. Kim HT, 2002, NEUROREPORT, V13, P1607, DOI 10.1097/00001756-200209160-00007
  26. Kleim JA, 1997, NEUROBIOL LEARN MEM, V67, P29, DOI 10.1006/nlme.1996.3742
  27. Kleim JA, 2002, NEUROBIOL LEARN MEM, V77, P63, DOI 10.1006/nlme.2001.4004
  28. Kleim JA, 1998, NEUROBIOL LEARN MEM, V69, P290, DOI 10.1006/nlme.1998.3828
  29. Kleim JA, 1998, NEUROBIOL LEARN MEM, V69, P274, DOI 10.1006/nlme.1998.3827
  30. Klintsova AY, 2004, BRAIN RES, V1028, P92, DOI 10.1016/j.brainres.2004.09.003
  31. Kumar A, 2012, NEUROBIOL AGING, V33, DOI 10.1016/j.neurobiolaging.2011.06.023
  32. Lewis MM, 2007, NEUROSCIENCE, V147, P224, DOI 10.1016/j.neuroscience.2007.04.006
  33. Li L, 2016, NEURAL REGEN RES, V11, P807, DOI 10.4103/1673-5374.182709
  34. Monfils MH, 2005, NEUROSCIENTIST, V11, P471, DOI 10.1177/1073858405278015
  35. Mora F, 2007, BRAIN RES REV, V55, P78, DOI 10.1016/j.brainresrev.2007.03.011
  36. Notter T, 2014, EUR J NEUROSCI, V39, P165, DOI 10.1111/ejn.12447
  37. Ozawa S, 1998, PROG NEUROBIOL, V54, P581, DOI 10.1016/S0301-0082(97)00085-3
  38. Pietrelli A, 2012, NEUROSCIENCE, V202, P252, DOI 10.1016/j.neuroscience.2011.11.054
  39. Real CC, 2015, BRAIN RES, V1624, P188, DOI 10.1016/j.brainres.2015.06.052
  40. Salame S, 2016, BEHAV BRAIN RES, V308, P64, DOI 10.1016/j.bbr.2016.04.029
  41. Sanderson DJ, 2008, PROG BRAIN RES, V169, P159, DOI 10.1016/S0079-6123(07)00009-X
  42. Segovia G, 2001, NEUROCHEM RES, V26, P37, DOI 10.1023/A:1007624531077
  43. Shankar GM, 2008, NAT MED, V14, P837, DOI 10.1038/nm1782
  44. Shimada H, 2017, J NEUROENG REHABIL, V14, DOI 10.1186/s12984-017-0263-9
  45. Shupliakov O, 2011, SEMIN CELL DEV BIOL, V22, P393, DOI 10.1016/j.semcdb.2011.07.006
  46. Speisman RB, 2013, BRAIN BEHAV IMMUN, V28, P25, DOI 10.1016/j.bbi.2012.09.013
  47. Stein LR, 2016, NEUROSCIENCE, V329, P294, DOI 10.1016/j.neuroscience.2016.05.020
  48. Uysal N, 2017, J CHEM NEUROANAT, V81, P27, DOI 10.1016/j.jchemneu.2017.02.004
  49. VanGuilder HD, 2010, J NEUROCHEM, V113, P1577, DOI 10.1111/j.1471-4159.2010.06719.x
  50. Vaynman SS, 2006, BRAIN RES, V1070, P124, DOI 10.1016/j.brainres.2005.11.062
  51. WALLACE JE, 1980, J GERONTOL, V35, P364, DOI 10.1093/geronj/35.3.364
  52. Walsh DM, 2007, J NEUROCHEM, V101, P1172, DOI 10.1111/j.1471-4159.2006.04426.x
  53. Wang DC, 2014, J COMP PHYSIOL A, V200, P959, DOI 10.1007/s00359-014-0942-y
  54. Weinstein AM, 2012, BRAIN BEHAV IMMUN, V26, P811, DOI 10.1016/j.bbi.2011.11.008
  55. Xie ZL, 2017, FRONT MOL NEUROSCI, V10, DOI 10.3389/fnmol.2017.00047
  56. Yin HH, 2010, J NEUROSCI, V30, P14719, DOI 10.1523/JNEUROSCI.3989-10.2010
  57. Ziegler G, 2012, FRONT NEUROINFORM, V6, DOI 10.3389/fninf.2012.00003