Oncogenic Signaling Pathways in The Cancer Genome Atlas

Carregando...
Imagem de Miniatura
Citações na Scopus
1737
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
CELL PRESS
Autores
SANCHEZ-VEGA, Francisco
MINA, Marco
ARMENIA, Joshua
CHATILA, Walid K.
LUNA, Augustin
LA, Konnor C.
DIMITRIADOY, Sofia
LIU, David L.
KANTHETI, Havish S.
SAGHAFINIA, Sadegh
Citação
CELL, v.173, n.2, p.321-337.e10, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFb signaling, p53 and beta-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.
Palavras-chave
Referências
  1. Agrawal N, 2014, CELL, V159, P676, DOI 10.1016/j.cell.2014.09.050
  2. Akbani R, 2015, CELL, V161, P1681, DOI 10.1016/j.cell.2015.05.044
  3. Alaei-Mahabadi B, 2016, P NATL ACAD SCI USA, V113, P13768, DOI 10.1073/pnas.1606220113
  4. Alexandrov LB, 2013, NATURE, V500, P415, DOI 10.1038/nature12477
  5. Ally A, 2017, CELL, V169, P1327, DOI 10.1016/j.cell.2017.05.046
  6. Aster JC, 2012, J CLIN ONCOL, V30, P2418, DOI 10.1200/JCO.2012.42.0992
  7. Bailey MH, 2018, CELL, V173, P371, DOI 10.1016/j.cell.2018.02.060
  8. Bass AJ, 2014, NATURE, V513, P202, DOI 10.1038/nature13480
  9. Bell D, 2011, NATURE, V474, P609, DOI 10.1038/nature10166
  10. Benelli M, 2012, BIOINFORMATICS, V28, P3232, DOI 10.1093/bioinformatics/bts617
  11. Boland CR, 2010, GASTROENTEROLOGY, V138, P2073, DOI 10.1053/j.gastro.2009.12.064
  12. Brennan CW, 2013, CELL, V155, P462, DOI 10.1016/j.cell.2013.09.034
  13. Buijs Jeroen T, 2012, Bonekey Rep, V1, P96, DOI 10.1038/bonekey.2012.96
  14. Campbell JD, 2016, NAT GENET, V48, P607, DOI 10.1038/ng.3564
  15. Cancer Genome Atlas Research Network, 2013, Nature, V499, P43, DOI 10.1038/nature12222
  16. Cerami E, 2012, CANCER DISCOV, V2, P401, DOI 10.1158/2159-8290.CD-12-0095
  17. Cerami EG, 2011, NUCLEIC ACIDS RES, V39, pD685, DOI 10.1093/nar/gkq1039
  18. Chakravarty D, 2017, JCO PRECIS ONCOL, V2017
  19. Chakravarty D, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-08940-9
  20. Chang MT, 2018, CANCER DISCOV, V8, P174, DOI [10.1158/2159-8290.CD-17-0321, 10.1075/cld.17004.cha]
  21. Chang MT, 2016, NAT BIOTECHNOL, V34, P155, DOI 10.1038/nbt.3391
  22. Chin L, 2008, NATURE, V455, P1061, DOI 10.1038/nature07385
  23. Ciriello G, 2013, NAT GENET, V45, P1127, DOI 10.1038/ng.2762
  24. Collisson EA, 2014, NATURE, V511, P543, DOI 10.1038/nature13385
  25. Davis CF, 2014, CANCER CELL, V26, P319, DOI 10.1016/j.ccr.2014.07.014
  26. Ellrott K, 2018, CELL SYST, V6, P271, DOI 10.1016/j.cels.2018.03.002
  27. Etemadmoghadam D, 2013, P NATL ACAD SCI USA, V110, P19489, DOI 10.1073/pnas.1314302110
  28. Forrest ARR, 2014, NATURE, V507, P462, DOI 10.1038/nature13182
  29. Gao JJ, 2017, GENOME MED, V9, DOI 10.1186/s13073-016-0393-x
  30. Gao JJ, 2014, CURR OPIN GENET DEV, V24, P92, DOI 10.1016/j.gde.2013.12.003
  31. Gao QS, 2018, CELL REP, V23, P227, DOI 10.1016/j.celrep.2018.03.050
  32. Garraway LA, 2013, CELL, V153, P17, DOI 10.1016/j.cell.2013.03.002
  33. Ge ZQ, 2018, CELL REP, V23, P213, DOI 10.1016/j.celrep.2018.03.047
  34. Getz G, 2013, NATURE, V497, P67, DOI 10.1038/nature12113
  35. Hammerman PS, 2012, NATURE, V489, P519, DOI 10.1038/nature11404
  36. Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  37. Hartmaier RJ, 2017, CANCER RES, V77, P2464, DOI 10.1158/0008-5472.CAN-16-2479
  38. Hoadley KA, 2018, CELL, V173, P291, DOI 10.1016/j.cell.2018.03.022
  39. Hoadley KA, 2014, CELL, V158, P929, DOI 10.1016/j.cell.2014.06.049
  40. Jayasinghe RG, 2018, CELL REP, V23, P270, DOI 10.1016/j.celrep.2018.03.052
  41. Joshi-Tope G, 2005, NUCLEIC ACIDS RES, V33, pD428, DOI 10.1093/nar/gki072
  42. Kim J, 2017, NATURE, V541, P169, DOI 10.1038/nature20805
  43. Knijnenburg TA, 2018, CELL REP, V23, P239, DOI 10.1016/j.celrep.2018.03.076
  44. Koboldt DC, 2012, NATURE, V490, P61, DOI 10.1038/nature11412
  45. Korkut A., 2017, CANC CELL
  46. Laroche-Clary A, 2017, J HEMATOL ONCOL, V10, DOI 10.1186/s13045-017-0482-3
  47. Lawrence MS, 2015, NATURE, V517, P576, DOI 10.1038/nature14129
  48. Lawrence MS, 2014, NATURE, V505, P495, DOI 10.1038/nature12912
  49. Lawrence MS, 2013, NATURE, V499, P214, DOI 10.1038/nature12213
  50. Lepri F, 2011, HUM MUTAT, V32, P760, DOI 10.1002/humu.21492
  51. Mermel CH, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-4-r41
  52. Mina M, 2017, CANCER CELL, V32, P155, DOI 10.1016/j.ccell.2017.06.010
  53. Mitsuishi Y, 2012, CANCER CELL, V22, P66, DOI 10.1016/j.ccr.2012.05.016
  54. Muzny DM, 2012, NATURE, V487, P330, DOI 10.1038/nature11252
  55. Nissan MH, 2014, CANCER RES, V74, P2340, DOI 10.1158/0008-5472.CAN-13-2625
  56. Pai SG, 2017, J HEMATOL ONCOL, V10, DOI 10.1186/s13045-017-0471-6
  57. Park HW, 2013, TRENDS PHARMACOL SCI, V34, P581, DOI 10.1016/j.tips.2013.08.006
  58. Peng XX, 2018, CELL REP, V23, P255, DOI 10.1016/j.celrep.2018.03.077
  59. Rayner E, 2016, NAT REV CANCER, V16, P71, DOI 10.1038/nrc.2015.12
  60. Schaub FX, 2018, CELL SYST, V6, P282, DOI 10.1016/j.cels.2018.03.003
  61. Schram AM, 2017, PLOS MED, V14, DOI 10.1371/journal.pmed.1002242
  62. Seiler M, 2018, CELL REP, V23, P282, DOI 10.1016/j.celrep.2018.01.088
  63. Sheen YY, 2013, BIOMOL THER, V21, P323, DOI 10.4062/biomolther.2013.072
  64. Sholl LM, 2016, JCI INSIGHT, V1, DOI 10.1172/jci.insight.87062
  65. Sun C, 2014, NATURE, V508, P118, DOI 10.1038/nature13121
  66. Takebe N, 2014, PHARMACOL THERAPEUT, V141, P140, DOI 10.1016/j.pharmthera.2013.09.005
  67. Triche TJ, 2013, NUCLEIC ACIDS RES, V41, DOI 10.1093/nar/gkt090
  68. Unni AM, 2015, ELIFE, V4, DOI 10.7554/eLife.06907
  69. Vogelstein B, 2004, NAT MED, V10, P789, DOI 10.1038/nm1087
  70. Vogelstein B, 2013, SCIENCE, V339, P1546, DOI 10.1126/science.1235122
  71. Wang ZH, 2018, CANCER CELL, V33, P706, DOI 10.1016/j.ccell.2018.03.006
  72. Way GP, 2018, CELL REP, V23, P172, DOI 10.1016/j.celrep.2018.03.046
  73. Weinstein JN, 2014, NATURE, V507, P315, DOI 10.1038/nature12965
  74. Weinstein JN, 2013, NAT GENET, V45, P1113, DOI 10.1038/ng.2764
  75. Whitfield Jonathan R, 2017, Front Cell Dev Biol, V5, P10, DOI 10.3389/fcell.2017.00010
  76. Zehir A, 2017, NAT MED, V23, P703, DOI 10.1038/nm.4333
  77. Zhang YQ, 2017, CANCER CELL, V31, P820, DOI 10.1016/j.ccell.2017.04.013