Musical and vocal emotion perception for cochlear implants users

Carregando...
Imagem de Miniatura
Citações na Scopus
35
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Autores
PAQUETTE, S.
AHMED, G. D.
PERETZ, I.
LEHMANN, A.
Citação
HEARING RESEARCH, v.370, p.272-282, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cochlear implants can successfully restore hearing in profoundly deaf individuals and enable speech comprehension. However, the acoustic signal provided is severely degraded and, as a result, many important acoustic cues for perceiving emotion in voices and music are unavailable. The deficit of cochlear implant users in auditory emotion processing has been clearly established. Yet, the extent to which this deficit and the specific cues that remain available to cochlear implant users are unknown due to several confounding factors. Here we assessed the recognition of the most basic forms of auditory emotion and aimed to identify which acoustic cues are most relevant to recognize emotions through cochlear implants. To do so, we used stimuli that allowed vocal and musical auditory emotions to be comparatively assessed while controlling for confounding factors. These stimuli were used to evaluate emotion perception in cochlear implant users (Experiment 1) and to investigate emotion perception in natural versus cochlear implant hearing in the same participants with a validated cochlear implant simulation approach (Experiment 2). Our results showed that vocal and musical fear was not accurately recognized by cochlear implant users. Interestingly, both experiments found that timbral acoustic cues (energy and roughness) correlate with participant ratings for both vocal and musical emotion bursts in the cochlear implant simulation condition. This suggests that specific attention should be given to these cues in the design of cochlear implant processors and rehabilitation protocols (especially energy, and roughness). For instance, music based interventions focused on timbre could improve emotion perception and regulation, and thus improve social functioning, in children with cochlear implants during development.
Palavras-chave
Cochlear implants, Emotional acoustic cues, Cross-domain comparison, Music, Voice, Timbre
Referências
  1. Ahmed DG, 2018, CLIN EEG NEUROSCI, V49, P143, DOI 10.1177/1550059417733386
  2. Ambert-Dahan E, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.00181
  3. [Anonymous], 1969, IEEE T ACOUST SPEECH, VAU17, P225
  4. Belin P, 2008, BEHAV RES METHODS, V40, P531, DOI 10.3758/BRM.40.2.531
  5. Bestelmeyer PEG, 2010, COGNITION, V117, P217, DOI 10.1016/j.cognition.2010.08.008
  6. Bigand E, 2005, COGNITION EMOTION, V19, P1113, DOI 10.1080/02699930500204250
  7. Boersma P., 2001, GLOT INT, V5, P341
  8. Cousineau M, 2010, HEARING RES, V269, P34, DOI 10.1016/j.heares.2010.07.007
  9. Cullington HE, 2010, EAR HEARING, V31, P70, DOI 10.1097/AUD.0b013e3181bc7722
  10. Driscoll VD, 2009, J AM ACAD AUDIOL, V20, P71, DOI 10.3766/jaaa.20.1.7
  11. DUNLAP WP, 1994, MULTIVAR BEHAV RES, V29, P115, DOI 10.1207/s15327906mbr2901_4
  12. Frank MG, 2001, J PERS SOC PSYCHOL, V80, P75, DOI 10.1037/0022-3514.80.1.75
  13. Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P180, DOI 10.1007/s10162-005-5061-6
  14. Gabrielsson A, 2001, INFLUENCE MUSICAL ST
  15. GFELLER K, 1991, J SPEECH HEAR RES, V34, P916, DOI 10.1044/jshr.3404.916
  16. GFELLER K, 1992, J MUSIC THER, V29, P18, DOI 10.1093/jmt/29.1.18
  17. Gfeller Kate, 2002, J Am Acad Audiol, V13, P132
  18. Gfeller Kate, 2002, Cochlear Implants Int, V3, P29, DOI 10.1179/cim.2002.3.1.29
  19. Gilbers S, 2015, I-PERCEPTION, V6, DOI 10.1177/0301006615599139
  20. Gosselin N, 2007, NEUROPSYCHOLOGIA, V45, P236, DOI 10.1016/j.neuropsychologia.2006.07.012
  21. Gosselin N, 2015, CORTEX, V71, P171, DOI 10.1016/j.cortex.2015.06.022
  22. Hopyan T, 2016, CHILD NEUROPSYCHOL, V22, P366, DOI 10.1080/09297049.2014.992400
  23. Hopyan T, 2012, FRONT PSYCHOL, V3, DOI 10.3389/fpsyg.2012.00425
  24. Hyde KL, 2004, PSYCHOL SCI, V15, P356, DOI 10.1111/j.0956-7976.2004.00683.x
  25. Juslin PN, 2003, PSYCHOL BULL, V129, P770, DOI 10.1037/0033-2909.129.5.770
  26. Juslin PN, 2000, J EXP PSYCHOL HUMAN, V26, P1797, DOI 10.1037//0096-1523.26.6.1797
  27. Kleiner M, 2007, PERCEPTION, V36, P14
  28. Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F
  29. Laneau J, 2004, J ACOUST SOC AM, V116, P3606, DOI 10.1121/1.1823311
  30. Language T, 2004, COMPONENTS, DOI [10.1007/s10766-008-0082-5, DOI 10.1007/S10766-008-0082-5]
  31. Lartillot O, 2007, P 10 INT C DIG AUD E, P1
  32. Lehmann A, 2015, FRONT NEUROSCI-SWITZ, V9, DOI 10.3389/fnins.2015.00343
  33. Limb Charles J, 2006, Curr Opin Otolaryngol Head Neck Surg, V14, P337, DOI 10.1097/01.moo.0000244192.59184.bd
  34. Looi Valerie, 2012, Seminars in Hearing, V33, P307, DOI 10.1055/s-0032-1329222
  35. Moore BCJ, 2003, J ACOUST SOC AM, V114, P408, DOI 10.1121/1.1577552
  36. Nakata T, 2012, J ACOUST SOC AM, V131, P1307, DOI 10.1121/1.3672697
  37. NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469
  38. Nogaki G, 2007, EAR HEARING, V28, P132, DOI 10.1097/AUD.0b013e3180312669
  39. Paquette S, 2018, ANN NY ACAD SCI, V1423, P329, DOI 10.1111/nyas.13666
  40. Paquette S, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00509
  41. Poissant SF, 2006, J ACOUST SOC AM, V119, P1606, DOI 10.1121/1.2168428
  42. Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009
  43. Quarto T, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103278
  44. Rogalsky C, 2011, J NEUROSCI, V31, P3843, DOI 10.1523/JNEUROSCI.4515-10.2011
  45. Rubinstein JT, 2003, ANN OTO RHINOL LARYN, V112, P14
  46. SCHERER KR, 1986, PSYCHOL BULL, V99, P143, DOI 10.1037/0033-2909.99.2.143
  47. SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807
  48. SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
  49. Sharda M, 2015, AUTISM RES, V8, P174, DOI 10.1002/aur.1437
  50. Stabej KK, 2012, INT J PEDIATR OTORHI, V76, P1392, DOI 10.1016/j.ijporl.2012.07.004
  51. Turgeon C, 2014, CLIN NEUROPHYSIOL, V125, P827, DOI 10.1016/j.clinph.2013.09.035
  52. Volkova A., 2013, CHILDREN BILATERAL C, P80, DOI [10.1179/1754762812Y.000000000414, DOI 10.1179/1754762812Y.000000000414]
  53. Vuvan D T, 2018, Behav Res Methods, V50, P662, DOI 10.3758/s13428-017-0892-8
  54. Wang DJ, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00351
  55. Wang YF, 2011, RES DEV DISABIL, V32, P2583, DOI 10.1016/j.ridd.2011.06.019
  56. Whipple CM, 2015, J MUSIC THER, V52, P78, DOI 10.1093/jmt/thu039
  57. Wiefferink CH, 2013, J DEAF STUD DEAF EDU, V18, P175, DOI 10.1093/deafed/ens042
  58. Wiefferink CH, 2012, INT J PEDIATR OTORHI, V76, P883, DOI 10.1016/j.ijporl.2012.02.065
  59. Witt S, 2002, ANN OTO RHINOL LARYN, V111, P349, DOI 10.1177/000348940211100412
  60. Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102