Analysis of Different Device Interactions in a Virtual Reality Task in Individuals With Duchenne Muscular Dystrophy-A Randomized Controlled Trial

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
CROCETTA, Tania Brusque
ARAUJO, Luciano Vieira de
COE, Shelly
DAWES, Helen
MONTEIRO, Carlos Bandeira de Mello
Citação
FRONTIERS IN NEUROLOGY, v.10, article ID 24, 10p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
There is a need to support individuals with Duchenne Muscular Dystrophy (DMD) to achieve optimal functionality in everyday life and with meaningful tasks and activities, throughout stages of the disease progression. Thus, technological developments have created an exciting opportunity for the use of affordable virtual reality (VR) systems with different kinds of interaction devices, providing an efficient and fun tool for enabling improvement in motor performance. Objective: To compare performance on a virtual task using interfaces with and without physical contact in order to identify functionality by using different devices in individuals with DMD. Methods: One hundred and twenty male individuals took part on this study: 60 with DMD with a mean age of 16 +/- 5 (range 9-34 years old) and 60 without DMD in the control group (CG) matched by age. Participants were divided into three groups of 20 individuals each which performed a virtual task in three different interfaces: Kinect (R), computer Touch Screen and Leap Motion (R), in a cross over design in which all participants used all devices. Motor impairment in the DMD group was measured by using the Motor Function Measurement and Vignos scales. Results: All participants improved performance through practice, regardless of the interface used, although the DMD group had a continuous lower performance compared to the CG. In addition, the DMD group obtained a significant better performance with Leap Motion interface compared to the other interfaces, while the CG presented better performance on Touch Screen interface. Conclusion: Leap Motion provided better performance for individuals with DMD due to enablement of distal muscle function and ease of instrument adjustment using the virtual interface. Therefore, this type of interface should be encouraged for promoting functionality on general tasks using computer systems.
Palavras-chave
Duchenne Muscular Dystrophy, learning, motor skills, virtual reality exposure therapy, virtual reality, computer storage devices, functionality
Referências
  1. Berard C, 2005, NEUROMUSCULAR DISORD, V15, P463, DOI 10.1016/j.nmd.2005.03.004
  2. Burgstahler S, 2011, NEUROREHABILITATION, V28, P183, DOI 10.3233/NRE-2011-0648
  3. Capelini AM, 2017, NEUROPSYCH DIS TREAT, V13, P2209, DOI 10.2147/NDT.S125466
  4. Cincotti F, 2008, BRAIN RES BULL, V75, P796, DOI 10.1016/j.brainresbull.2008.01.007
  5. Cohen AR, 2013, CHILD NERV SYST, V29, P1235, DOI 10.1007/s00381-013-2139-z
  6. Crocetta TB, 2018, VIRTUAL REAL-LONDON, V22, P199, DOI 10.1007/s10055-017-0323-2
  7. Cyrulnik SE, 2008, J INT NEUROPSYCH SOC, V14, P853, DOI 10.1017/S135561770808106X
  8. da Silva TD, 2018, PEDIATR CARDIOL, V39, P869, DOI 10.1007/s00246-018-1881-0
  9. Monteiro CBD, 2017, BMC NEUROL, V17, DOI 10.1186/s12883-017-0852-z
  10. Monteiro CBD, 2014, RES DEV DISABIL, V35, P2430, DOI 10.1016/j.ridd.2014.06.006
  11. Fernani D. C. G. L., 2013, J HUMAN GROWTH DEV, V23, P209
  12. Flanigan KM, 2014, NEUROL CLIN, V32, P671, DOI 10.1016/j.ncl.2014.05.002
  13. Iosa M, 2015, TOP STROKE REHABIL, V22, P306, DOI 10.1179/1074935714Z.0000000036
  14. Iwabe C, 2008, BRAZ J PHYS THER, V12, P417, DOI 10.1590/S1413-35552008000500012
  15. JAMES WV, 1984, PROSTHET ORTHOT INT, V8, P111
  16. Jung IY, 2012, ANN REHABIL MED-ARM, V36, P22, DOI 10.5535/arm.2012.36.1.22
  17. Leung DG, 2013, ANN NEUROL, V74, P404, DOI 10.1002/ana.23989
  18. Lue YJ, 2009, KAOHSIUNG J MED SCI, V25, P325, DOI 10.1016/S1607-551X(09)70523-6
  19. Massetti T, 2018, GAMES HEALTH J, V7, P107, DOI 10.1089/g4h.2016.0088
  20. Mattar FL, 2008, NEUROMUSCULAR DISORD, V18, P193, DOI 10.1016/j.nmd.2007.11.004
  21. Monteiro CBM, 2010, REV BRAS CRESC DESEN, V20, P250
  22. Mousavi Hondori Hossein, 2014, J Med Eng, V2014, P846514, DOI 10.1155/2014/846514
  23. Munih M, 2010, INT J REHABIL RES, V33, P34, DOI 10.1097/MRR.0b013e32832e9899
  24. Nakafuji A, 2001, PERCEPT MOTOR SKILL, V93, P339, DOI 10.2466/PMS.93.5.339-352
  25. Oliveira PR, 2010, CAD BRAS TER OCUP, V18, P139
  26. Malheiros SRP, 2016, NEUROPSYCH DIS TREAT, V12, P41, DOI 10.2147/NDT.S87735
  27. Servais L, 2013, NEUROMUSCULAR DISORD, V23, P139, DOI 10.1016/j.nmd.2012.10.022
  28. Silva E, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34514-4
  29. Skalsky AJ, 2012, PHYS MED REH CLIN N, V23, P675, DOI 10.1016/j.pmr.2012.06.009
  30. Trevizan IL, 2018, BMC NEUROL, V18, DOI 10.1186/s12883-018-1212-3
  31. Uchikawa K, 2004, J REHABIL MED, V36, P124, DOI 10.1080/16501970410023461
  32. VIGNOS P J Jr, 1960, J Chronic Dis, V12, P273, DOI 10.1016/0021-9681(60)90105-3
  33. VILOZNI D, 1994, NEUROMUSCULAR DISORD, V4, P249, DOI 10.1016/0960-8966(94)90026-4
  34. Wagner KR, 2007, BBA-MOL BASIS DIS, V1772, P229, DOI 10.1016/j.bbadis.2006.06.009