Maternal antibiotic prophylaxis affects Bifidobacterium spp. counts in the human milk, during the first week after delivery

Nenhuma Miniatura disponível
Citações na Scopus
18
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WAGENINGEN ACADEMIC PUBLISHERS
Autores
PADILHA, M.
IAUCCI, J. M.
CABRAL, V. P.
TADDEI, C. R.
I, S. M. Saad
Citação
BENEFICIAL MICROBES, v.10, n.2, p.155-163, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Human milk is an important source of microorganisms for infant gut colonisation. Although the maternal antibiotic prophylaxis is an important strategy to prevent maternal/neonatal sepsis, it has to be investigated how it may affect the human milk microbiota, especially the genus Bifidobacterium, which has been associated to health benefits. Here, we investigated the impact of the maternal antibiotic prophylaxis on the human milk Bifidobacterium spp. and total bacteria counts, in the first week (short-term) and first month (medium-term) after delivery. Human milk samples were collected from 55 healthy lactating women recruited from the University Hospital of the University of Sao Paulo at days 7 +/- 3 and 30 +/- 4 after vaginal delivery. Twenty one volunteers had received maternal antibiotic prophylaxis (MAP group) and 34 had not received MAP (no-MAP group) during or after labour. Total DNA was isolated from milk samples, and the bacterial counts were estimated by quantitative PCR (qPCR). We found lower levels of Bdobacterium in the MAP group in the first week after delivery (median = 2.1 vs 2.4 log of equivalent cells/ml of human milk, for MAP and no-MAP groups, respectively; P=0.01), although there were no statistical differences in total bacteria count. However, no differences were found in Bifidobacterium counts between the groups at day 30 +/- 4 (median = 2.5 vs 2.2 log of equivalent cells/ml of human milk, for MAP and no-MAP groups, respectively; P=0.50). Our results suggest that MAP has a significant impact on Bifidobacterium counts in human milk, reducing this population in the first week after delivery. However, throughout the first month after delivery, the Bifidobacterium counts tend to recover, reaching similar counts to those found in no-MAP group at day 30 +/- 4 after delivery.
Palavras-chave
microbiota, breastfeeding, infant colonisation, lactation, probiotic
Referências
  1. Aloisio I, 2014, APPL MICROBIOL BIOT, V98, P6051, DOI 10.1007/s00253-014-5712-9
  2. American College of Obstetricians and Gynecologists, 2011, Obstet Gynecol, V117, P1472, DOI 10.1097/AOG.0b013e3182238c31
  3. Applied Biosystems, 2003, CREAT STAND CURV GEN
  4. Azad MB, 2016, BJOG-INT J OBSTET GY, V123, P983, DOI 10.1111/1471-0528.13601
  5. Berardi A, 2013, J PEDIATR-US, V163, P1099, DOI 10.1016/j.jpeds.2013.05.064
  6. Bisgaard H, 2011, J ALLERGY CLIN IMMUN, V128, P646, DOI 10.1016/j.jaci.2011.04.060
  7. Boix-Amoros A, 2016, FRONT MICROBIOL, V7, DOI [10.5389/fmicb.7016.00492, 10.3389/fmicb.2016.00492]
  8. Brandt K, 2012, CLINICS, V67, P113, DOI 10.6061/clinics/2012(02)05
  9. Cabrera-Rubio R, 2012, AM J CLIN NUTR, V96, P544, DOI 10.3945/ajcn.112.037382
  10. Centers for Disease Control and Prevention (CDC), 2010, PREV PER GROUP B STR
  11. Charbonneau MR, 2016, CELL, V164, P859, DOI 10.1016/j.cell.2016.01.024
  12. Collado MC, 2009, LETT APPL MICROBIOL, V48, P523, DOI 10.1111/j.1472-765X.2009.02567.x
  13. de Boer R, 2010, J MICROBIOL METH, V80, P209, DOI 10.1016/j.mimet.2009.11.009
  14. Dowling A, 2017, ANTIMICROBIAL RES NO, P536
  15. FERNANDEZ H, 1993, EUR J OBSTET GYN R B, V50, P169, DOI 10.1016/0028-2243(93)90197-K
  16. Fernandez L, 2013, PHARMACOL RES, V69, P1, DOI 10.1016/j.phrs.2012.09.001
  17. Furet JP, 2009, FEMS MICROBIOL ECOL, V68, P351, DOI 10.1111/j.1574-6941.2009.00671.x
  18. Gillings MR, 2015, GENES-BASEL, V6, P841, DOI 10.3390/genes6030841
  19. Gomez-Gallego C, 2016, SEMIN FETAL NEONAT M, V21, P400, DOI 10.1016/j.siny.2016.05.003
  20. Harmsen HJM, 2000, J PEDIATR GASTR NUTR, V30, P61, DOI 10.1097/00005176-200001000-00019
  21. Jakobsson HE, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009836
  22. Jernberg C, 2007, ISME J, V1, P56, DOI 10.1038/ismej.2007.3
  23. Jeurink PV, 2013, BENEF MICROBES, V4, P17, DOI 10.3920/BM2012.0040
  24. Jost T, 2013, BR J NUTR, V14, P1
  25. Lavanda I, 2011, REV NUTR, V24, P333, DOI 10.1590/S1415-52732011000200014
  26. Marques TM, 2010, CURR OPIN BIOTECH, V21, P149, DOI 10.1016/j.copbio.2010.03.020
  27. Martin R, 2007, J APPL MICROBIOL, V103, P2638, DOI 10.1111/j.1365-2672.2007.03497.x
  28. Martin R, 2009, APPL ENVIRON MICROB, V75, P965, DOI 10.1128/AEM.02063-08
  29. Moro G, 2006, ARCH DIS CHILD, V91, P814, DOI 10.1136/adc.2006.098251
  30. Musilova S, 2017, ACTA MICROBIOL IMM H, V64, P415, DOI 10.1556/030.64.2017.029
  31. Nogacka A, 2017, MICROBIOME, V5, DOI 10.1186/s40168-017-0313-3
  32. Pannaraj PS, 2017, JAMA PEDIATR, V171, P647, DOI 10.1001/jamapediatrics.2017.0378
  33. Penders J, 2007, GUT, V56, P661, DOI 10.1136/gut.2006.100164
  34. R Core Team, 2017, R LANG ENV STAT COMP
  35. Riley M, 2006, NUCLEIC ACIDS RES, V34, P1, DOI 10.1093/nar/gkj405
  36. Ringel-Kulka T, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064315
  37. Sakwinska O, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0160856
  38. Schell MA, 2002, P NATL ACAD SCI USA, V99, P14422, DOI 10.1073/pnas.212527599
  39. Sharma C, 2017, 3 BIOTECH, V7, DOI 10.1007/s13205-017-0682-0
  40. Solis G, 2010, ANAEROBE, V16, P307, DOI 10.1016/j.anaerobe.2010.02.004
  41. Soto A, 2014, J PEDIATR GASTR NUTR, V59, P78, DOI 10.1097/MPG.0000000000000347
  42. Talarico ST, 2017, CLINICS, V72, P154, DOI 10.6061/clinics/2017(03)05
  43. Tanaka S, 2009, FEMS IMMUNOL MED MIC, V56, P80, DOI 10.1111/j.1574-695X.2009.00553.x
  44. Vangay P, 2015, CELL HOST MICROBE, V17, P553, DOI 10.1016/j.chom.2015.04.006
  45. Whelan K, 2013, P NUTR SOC, V72, P288, DOI 10.1017/S0029665113001262
  46. Williams JE, 2017, J NUTR, V147, P1739, DOI 10.3945/jn.117.248864
  47. World Health Organization, 2015, WHO REC PREV TREATM