Clinical significance of metabolism-related biomarkers in non-Hodgkin lymphoma-MCT1 as potential target in diffuse large B cell lymphoma

Carregando...
Imagem de Miniatura
Citações na Scopus
27
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
AFONSO, Julieta
PINTO, Tatiana
SIMOES-SOUSA, Susana
SCHMITT, Fernando
PINHEIRO, Celine
MARQUES, Herlander
BALTAZAR, Fatima
Citação
CELLULAR ONCOLOGY, v.42, n.3, p.303-318, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
PurposeIncreased glycolytic activity with accumulation of extracellular lactate is regarded as a hallmark of cancer. In lymphomas, FDG-PET has undeniable diagnostic and prognostic value, corroborating that these tumours are avid for glucose. However, the role of glycolytic metabolism-related molecules in lymphoma is not well known. Here, we aimed to evaluate the clinical and prognostic significance of a panel of glycolytic metabolism-related molecules in primary non-Hodgkin lymphomas (NHL) and to test in vitro the putative therapeutic impact of lactate transport inhibition.MethodsWe assessed, by immunohistochemistry, the expression of the metabolism-related molecules MCT1, MCT2, MCT4, CD147, GLUT1, LDHA and CAIX in both tumour and stroma compartments of tissue sections obtained from 104 NHL patients. In addition, the lymphoma-derived cell lines OZ and DOHH-2 were used to evaluate the effect of AZD3965 on their viability and on apoptosis induction, as well as on extracellular lactate accumulation.ResultsWe found that expression of MCT1 in the NHL tumour compartment was significantly associated with a poor clinicopathological profile. We also found that MCT4 and CAIX were present in the stromal compartment and correlated with an aggressive phenotype, while MCT1 was absent in this compartment. In addition, we found that AZD3965-mediated disruption of MCT1 activity led to inhibited NHL cell viability and extracellular lactate accumulation, while increasing apoptotic cell death.ConclusionsOur results indicate that elevated glycolytic activity is associated with NHL aggressiveness, pointing at metabolic cooperation, mediated by MCT1 and MCT4, between tumour cells and their surrounding stroma. MCT1 may serve as a target to treat NHL (diffuse large B cell lymphoma) patients with high MCT1/low MCT4 expressing tumours. Further (pre-)clinical studies are required to allow the design of novel therapeutic strategies aimed at e.g. reprogramming the tumour microenvironment.
Palavras-chave
Non-Hodgkin lymphoma, Diffuse large B cell lymphoma, Warburg effect, Monocarboxylate transporters, Metabolic symbiosis, AZD3965
Referências
  1. Afonso J, 2016, CELL CYCLE, V15, P368, DOI 10.1080/15384101.2015.1121329
  2. Afonso J, 2015, MOL CARCINOGEN, V54, P1451, DOI 10.1002/mc.22222
  3. Armitage JO, 2017, LANCET, V390, P298, DOI 10.1016/S0140-6736(16)32407-2
  4. Armitage JO, 2005, CA-CANCER J CLIN, V55, P368, DOI 10.3322/canjclin.55.6.368
  5. Barretina J, 2012, NATURE, V483, P603, DOI 10.1038/nature11003
  6. Beloueche-Babari M, 2017, CANCER RES, V77, P5913, DOI 10.1158/0008-5472.CAN-16-2686
  7. Broecker-Preuss M, 2017, J TRANSL MED, V15, DOI 10.1186/s12967-017-1258-9
  8. Chen LQ, 2015, LEUKEMIA LYMPHOMA, V56, P1432, DOI 10.3109/10428194.2014.933218
  9. Cheson BD, 1999, J CLIN ONCOL, V17, P1244, DOI 10.1200/JCO.1999.17.4.1244
  10. Cheson BD, 2007, J CLIN ONCOL, V25, P579, DOI 10.1200/JCO.2006.09.2403
  11. Cheson BD, 2014, J CLIN ONCOL, V32, P3059, DOI 10.1200/JCO.2013.54.8800
  12. Chiu Brian C-H, 2015, Cancer Treat Res, V165, P1, DOI 10.1007/978-3-319-13150-4_1
  13. Curtis NJ, 2017, ONCOTARGET, V8, P69219, DOI 10.18632/oncotarget.18215
  14. Doherty JR, 2014, CANCER RES, V74, P908, DOI 10.1158/0008-5472.CAN-13-2034
  15. Doherty JR, 2013, J CLIN INVEST, V123, P3685, DOI 10.1172/JCI69741
  16. El-Galaly Tarec Christoffer, 2015, Cancer Treat Res, V165, P125, DOI 10.1007/978-3-319-13150-4_5
  17. Ferlay J, 2015, INT J CANCER, V136, pE359, DOI 10.1002/ijc.29210
  18. Gallamini A, 2014, CANCERS, V6, P1821, DOI 10.3390/cancers6041821
  19. Gan L, 2016, ONCOGENE, V35, P3037, DOI 10.1038/onc.2015.360
  20. Gao H, 2015, CELL BIOCHEM BIOPHYS, V71, P827, DOI 10.1007/s12013-014-0270-4
  21. Giatromanolaki A, 2017, EXP LUNG RES, V43, P167, DOI 10.1080/01902148.2017.1328714
  22. Gooptu M, 2017, SEMIN ONCOL, V44, P204, DOI 10.1053/j.seminoncol.2017.10.002
  23. Granja S, 2017, SEMIN CANCER BIOL, V43, P17, DOI 10.1016/j.semcancer.2016.12.003
  24. Halestrap AP, 2013, MOL ASPECTS MED, V34, P337, DOI 10.1016/j.mam.2012.05.003
  25. Halford SER, 2017, J CLIN ONCOL, V35, DOI 10.1200/JCO.2017.35.15_suppl.2516
  26. Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  27. Hao JL, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040716
  28. Hofman MS, 2016, CANCER IMAGING, V16, DOI 10.1186/s40644-016-0091-3
  29. Hoster E, 2016, J CLIN ONCOL, V34, P1386, DOI 10.1200/JCO.2015.63.8387
  30. Hu WQ, 2016, ONCOL LETT, V12, P591, DOI 10.3892/ol.2016.4657
  31. Johnson P, 2015, BLOOD, V125, P1717, DOI 10.1182/blood-2014-09-551556
  32. Jones RS, 2016, CLIN PHARMACOL THER, V100, P454, DOI 10.1002/cpt.418
  33. Jung DE, 2016, MOL CARCINOGEN, V55, P633, DOI 10.1002/mc.22309
  34. Jurisic V, 2015, ADV EXP MED BIOL, V867, P115, DOI 10.1007/978-94-017-7215-0_8
  35. Karmali R, 2017, CURR TREAT OPTION ON, V18, DOI 10.1007/s11864-017-0449-1
  36. Kim JW, 2007, MOL CELL BIOL, V27, P7381, DOI 10.1128/MCB.00440-07
  37. Kubuschok Boris, 2015, Cancer Treat Res, V165, P271, DOI 10.1007/978-3-319-13150-4_11
  38. Kumar A, 2013, TOXICOL APPL PHARM, V273, P196, DOI 10.1016/j.taap.2013.09.005
  39. Kumar A, 2013, APOPTOSIS, V18, P1574, DOI 10.1007/s10495-013-0894-7
  40. Kumar A, 2012, CHEM-BIOL INTERACT, V199, P29, DOI 10.1016/j.cbi.2012.06.005
  41. Le A, 2010, P NATL ACAD SCI USA, V107, P2037, DOI 10.1073/pnas.0914433107
  42. Le Floch R, 2011, P NATL ACAD SCI USA, V108, P16663, DOI 10.1073/pnas.1106123108
  43. LISTER TA, 1989, J CLIN ONCOL, V7, P1630, DOI 10.1200/JCO.1989.7.11.1630
  44. Liu YM, 2016, GENET MOL RES, V15, DOI 10.4238/gmr.15027242
  45. Lu RQ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074853
  46. Marchiq I, 2015, ONCOTARGET, V6, P24636, DOI 10.18632/oncotarget.4323
  47. Martinez-Outschoorn UE, 2017, NAT REV CLIN ONCOL, V14, P113, DOI 10.1038/nrclinonc.2017.1
  48. Martinez-Outschoorn UE, 2014, SEMIN CANCER BIOL, V25, P47, DOI 10.1016/j.semcancer.2014.01.005
  49. Martinez-Outschoorn UE, 2013, SEMIN ONCOL, V40, P403, DOI 10.1053/j.seminoncol.2013.04.016
  50. Mathupala SP, 2004, NEUROSURGERY, V55, P1410, DOI 10.1227/01.NEU.0000143034.62913.59
  51. Mikkilineni L, 2017, SEMIN ONCOL, V44, P218, DOI 10.1053/j.seminoncol.2017.10.003
  52. Miranda-Goncalves V, 2013, NEURO-ONCOLOGY, V15, P172, DOI 10.1093/neuonc/nos298
  53. Mitchell MI, 2017, CRIT REV ONCOL HEMAT, V109, P1, DOI 10.1016/j.critrevonc.2016.11.010
  54. Miyazaki K, 2016, J CLIN EXP HEMATOP, V56, P79
  55. Morais-Santos F, 2015, ONCOTARGET, V6, P19177, DOI 10.18632/oncotarget.3910
  56. Morais-Santos F, 2014, ENDOCR-RELAT CANCER, V21, P27, DOI 10.1530/ERC-13-0132
  57. Mushtaq M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136142
  58. Nilendu P, 2018, CELL ONCOL, V41, P353, DOI 10.1007/s13402-018-0388-2
  59. Noble RA, 2017, HAEMATOLOGICA, V102, P1247, DOI 10.3324/haematol.2016.163030
  60. OKEN MM, 1982, AM J CLIN ONCOL-CANC, V5, P649, DOI 10.1097/00000421-198212000-00014
  61. Pertega-Gomes N, 2013, PROSTATE, V73, P763, DOI 10.1002/pros.22620
  62. Petrelli F, 2015, ACTA ONCOL, V54, P961, DOI 10.3109/0284186X.2015.1043026
  63. Pinheiro C, 2008, VIRCHOWS ARCH, V452, P139, DOI 10.1007/s00428-007-0558-5
  64. Pinheiro C, 2015, ONCOTARGET, V6, P44403, DOI 10.18632/oncotarget.5623
  65. Pinheiro C, 2014, J TRANSL MED, V12, DOI 10.1186/1479-5876-12-118
  66. Pinheiro C, 2010, J BIOMED BIOTECHNOL, DOI 10.1155/2010/427694
  67. Platzek I, 2016, PET CLIN, V11, P363, DOI 10.1016/j.cpet.2016.05.001
  68. Polanski R, 2014, CLIN CANCER RES, V20, P926, DOI 10.1158/1078-0432.CCR-13-2270
  69. Schaefer NG, 2012, TRANSL RES, V159, P51, DOI 10.1016/j.trsl.2011.08.008
  70. Schmidt J, 2017, LAB INVEST, V97, P1095, DOI 10.1038/labinvest.2017.54
  71. Shim HK, 2009, NUCL MED BIOL, V36, P191, DOI 10.1016/j.nucmedbio.2008.11.009
  72. SHIPP MA, 1993, NEW ENGL J MED, V329, P987
  73. Slomiany MG, 2009, CANCER RES, V69, P1293, DOI 10.1158/0008-5472.CAN-08-2491
  74. Solal-Celigny Philippe, 2006, Curr Treat Options Oncol, V7, P270, DOI 10.1007/s11864-006-0036-3
  75. Sonveaux P, 2008, J CLIN INVEST, V118, P3930, DOI 10.1172/JCI36843
  76. Swerdlow SH, 2008, WHO CLASSIFICATION T
  77. Swerdlow SH, 2016, BLOOD, V127, P2375, DOI 10.1182/blood-2016-01-643569
  78. Valenca I, 2015, J CELL MOL MED, V19, P723, DOI 10.1111/jcmm.12481
  79. van Kuijk SJA, 2016, FRONT ONCOL, V6, DOI 10.3389/fonc.2016.00069
  80. van Niekerk G, 2018, CELL ONCOL, V41, P343, DOI 10.1007/s13402-018-0383-7
  81. Watanabe Y, 2013, INT J HEMATOL, V97, P43, DOI 10.1007/s12185-012-1225-4
  82. William Basem Magdy, 2013, Rev. Bras. Hematol. Hemoter., V35, P189, DOI 10.5581/1516-8484.20130055
  83. Wright CL, 2017, PET CLIN, V12, P63, DOI 10.1016/j.cpet.2016.08.005
  84. Xin XY, 2016, SCI REP-UK, V6, DOI 10.1038/srep32804