Widespread white matter microstructural abnormalities in bipolar disorder: evidence from mega- and meta-analyses across 3033 individuals

Carregando...
Imagem de Miniatura
Citações na Scopus
125
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
FAVRE, Pauline
PAULING, Melissa
STOUT, Jacques
HOZER, Franz
SARRAZIN, Samuel
ABE, Christoph
ALDA, Martin
ALLOZA, Clara
ALONSO-LANA, Silvia
ANDREASSEN, Ole A.
Citação
NEUROPSYCHOPHARMACOLOGY, v.44, n.13, p.2285-2293, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Fronto-limbic white matter (WM) abnormalities are assumed to lie at the heart of the pathophysiology of bipolar disorder (BD); however, diffusion tensor imaging (DTI) studies have reported heterogeneous results and it is not clear how the clinical heterogeneity is related to the observed differences. This study aimed to identify WM abnormalities that differentiate patients with BD from healthy controls (HC) in the largest DTI dataset of patients with BD to date, collected via the ENIGMA network. We gathered individual tensor-derived regional metrics from 26 cohorts leading to a sample size of N = 3033 (1482 BD and 1551 HC). Mean fractional anisotropy (FA) from 43 regions of interest (ROI) and average whole-brain FA were entered into univariate mega- and meta-analyses to differentiate patients with BD from HC. Mega-analysis revealed significantly lower FA in patients with BD compared with HC in 29 regions, with the highest effect sizes observed within the corpus callosum (R-2 = 0.041, P-corr < 0.001) and cingulum (right: R-2 = 0.041, left: R-2 = 0.040, P-corr < 0.001). Lithium medication, later onset and short disease duration were related to higher FA along multiple ROIs. Results of the meta-analysis showed similar effects. We demonstrated widespread WM abnormalities in BD and highlighted that altered WM connectivity within the corpus callosum and the cingulum are strongly associated with BD. These brain abnormalities could represent a biomarker for use in the diagnosis of BD. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.
Palavras-chave
Referências
  1. Abramovic L, 2018, EUR NEUROPSYCHOPHARM, V28, P743, DOI 10.1016/j.euroneuro.2018.01.001
  2. Anderson LB, 2017, ARCH CLIN NEUROPSYCH, V32, P267, DOI 10.1093/arclin/acx001
  3. BASSER PJ, 1994, BIOPHYS J, V66, P259, DOI 10.1016/S0006-3495(94)80775-1
  4. Bates D, 2013, J STAT SOFTW, V52, P1
  5. Benedetti F, 2013, NEUROPSYCHOPHARMACOL, V38, P313, DOI 10.1038/npp.2012.172
  6. Cui LQ, 2011, PSYCHIAT RES-NEUROIM, V194, P347, DOI 10.1016/j.pscychresns.2011.03.010
  7. Favre P, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134961
  8. Favre P, 2014, J AFFECT DISORDERS, V165, P182, DOI 10.1016/j.jad.2014.04.054
  9. Goldberg JF, 2002, J CLIN PSYCHIAT, V63, P985, DOI 10.4088/JCP.v63n1105
  10. Ha TH, 2011, NEUROSCI LETT, V505, P150, DOI 10.1016/j.neulet.2011.10.009
  11. Hajek T, 2012, J PSYCHIATR NEUROSCI, V37, P185, DOI 10.1503/jpn.110097
  12. Hibar DP, 2018, MOL PSYCHIATR, V23, P932, DOI 10.1038/mp.2017.73
  13. Hibar DP, 2016, MOL PSYCHIATR, V21, P1710, DOI 10.1038/mp.2015.227
  14. Houenou J, 2007, MOL PSYCHIATR, V12, P1001, DOI 10.1038/sj.mp.4002010
  15. Ji E, 2019, SCHIZOPHRENIA BULL, V45, P1367, DOI 10.1093/schbul/sbz015
  16. Kelly S, 2018, MOL PSYCHIATR, V23, P1261, DOI 10.1038/mp.2017.170
  17. Kochunov P, 2014, NEUROIMAGE, V95, P136, DOI 10.1016/j.neuroimage.2014.03.033
  18. Leow A, 2013, BIOL PSYCHIAT, V73, P183, DOI 10.1016/j.biopsych.2012.09.014
  19. Linke J, 2013, BIOL PSYCHIAT, V74, P908, DOI 10.1016/j.biopsych.2013.04.010
  20. Lyoo IK, 2010, NEUROPSYCHOPHARMACOL, V35, P1743, DOI 10.1038/npp.2010.41
  21. Mahon K, 2010, NEUROSCI BIOBEHAV R, V34, P533, DOI 10.1016/j.neubiorev.2009.10.012
  22. Marlinge E, 2014, BIPOLAR DISORD, V16, P97, DOI 10.1111/bdi.12135
  23. Meffre D, 2015, NEUROSCIENCE, V284, P962, DOI 10.1016/j.neuroscience.2014.10.064
  24. Merikangas KR, 2007, ARCH GEN PSYCHIAT, V64, P543, DOI 10.1001/archpsyc.64.5.543
  25. Miller GA, 2001, J ABNORM PSYCHOL, V110, P40, DOI 10.1037//0021-843X.110.1.40
  26. Moore GJ, 2009, J CLIN PSYCHIAT, V70, P699, DOI 10.4088/JCP.07m03745
  27. Mori S, 2008, NEUROIMAGE, V40, P570, DOI 10.1016/j.neuroimage.2007.12.035
  28. Nortje G, 2013, J AFFECT DISORDERS, V150, P192, DOI 10.1016/j.jad.2013.05.034
  29. Phillips ML, 2014, AM J PSYCHIAT, V171, P829, DOI 10.1176/appi.ajp.2014.13081008
  30. Repple J, 2017, BIPOLAR DISORD, V19, P23, DOI 10.1111/bdi.12465
  31. Roberts G, 2016, PSYCHOL MED, V46, P2385, DOI 10.1017/S0033291716001161
  32. Sarrazin S, 2019, PSYCHOTHER PSYCHOSOM, V88, P171, DOI 10.1159/000498854
  33. Sarrazin S, 2014, JAMA PSYCHIAT, V71, P388, DOI 10.1001/jamapsychiatry.2013.4513
  34. Strakowski SM, 2012, BIPOLAR DISORD, V14, P313, DOI 10.1111/j.1399-5618.2012.01022.x
  35. Vederine FE, 2011, PROG NEURO-PSYCHOPH, V35, P1820, DOI 10.1016/j.pnpbp.2011.05.009
  36. Versace A, 2008, ARCH GEN PSYCHIAT, V65, P1041, DOI 10.1001/archpsyc.65.9.1041
  37. Wang F, 2008, BIOL PSYCHIAT, V64, P730, DOI 10.1016/j.biopsych.2008.06.001
  38. Wang F, 2008, BRIT J PSYCHIAT, V193, P126, DOI 10.1192/bjp.bp.107.048793
  39. Wise T, 2016, BIOL PSYCHIAT, V79, P293, DOI 10.1016/j.biopsych.2015.03.004
  40. Yang C, 2019, J PSYCHIATR NEUROSCI, V44, P32, DOI 10.1503/jpn.170221
  41. Yurgelun-Todd DA, 2007, BIPOLAR DISORD, V9, P504, DOI 10.1111/j.1399-5618.2007.00395.x
  42. Zanetti MV, 2009, EUR ARCH PSY CLIN N, V259, P316, DOI 10.1007/s00406-009-0002-8
  43. Zhang H, 2012, NEUROIMAGE, V61, P1000, DOI 10.1016/j.neuroimage.2012.03.072