Cancer cachexia induces morphological and inflammatory changes in the intestinal mucosa

Carregando...
Imagem de Miniatura
Citações na Scopus
29
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
COSTA, Raquel G. F.
CARO, Paula L.
MATOS-NETO, Emidio M. de
LIMA, Joanna D. C. C.
RADLOFF, Katrin
ALVES, Michele J.
CAMARGO, Rodolfo G.
PESSOA, Ana Flavia M.
SIMOES, Estefania
GAMA, Patricia
Citação
JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, v.10, n.5, p.1116-1127, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Cachexia is a multifactorial and multiorgan syndrome associated with cancer and other chronic diseases and characterized by severe involuntary body weight loss, disrupted metabolism, inflammation, anorexia, fatigue, and diminished quality of life. This syndrome affects around 50% of patients with colon cancer and is directly responsible for the death of at least 20% of all cancer patients. Systemic inflammation has been recently proposed to underline most of cachexia-related symptoms. Nevertheless, the exact mechanisms leading to the initiation of systemic inflammation have not yet been unveiled, as patients bearing the same tumour and disease stage may or may not present cachexia. We hypothesize a role for gut barrier disruption, which may elicit persistent immune activation in the host. To address this hypothesis, we analysed the healthy colon tissue, adjacent to the tumour. Methods Blood and rectosigmoid colon samples (20 cm distal to tumour margin) obtained during surgery, from cachectic (CC = 25) or weight stable (WSC = 20) colon cancer patients, who signed the informed consent form, were submitted to morphological (light microscopy), immunological (immunohistochemistry and flow cytometry), and molecular (quantification of inflammatory factors by Luminex (R) xMAP) analyses. Results There was no statistical difference in gender and age between groups. The content of plasma interleukin 6 (IL-6) and IL-8 was augmented in cachectic patients relative to those with stable weight (P = 0.047 and P = 0.009, respectively). The number of lymphocytic aggregates/field in the gut mucosa was higher in CC than in WSC (P = 0.019), in addition to those of the lamina propria (LP) eosinophils (P < 0.001) and fibroblasts (P < 0.001). The area occupied by goblet cells in the colon mucosa was decreased in CC (P = 0.016). The M1M2 macrophages percentage was increased in the colon of CC, in relation to WSC (P = 0.042). Protein expression of IL-7, IL-13, and transforming growth factor beta 3 in the colon was significantly increased in CC, compared with WSC (P = 0.02, P = 0.048, and P = 0.048, respectively), and a trend towards a higher content of granulocyte-colony stimulating factor in CC was also observed (P = 0.061). The results suggest an increased recruitment of immune cells to the colonic mucosa in CC, as compared with WSC, in a fashion that resembles repair response following injury, with higher tissue content of IL-13 and transforming growth factor beta 3. Conclusions The changes in the intestinal mucosa cellularity, along with modified cytokine expression in cachexia, indicate that gut barrier alterations are associated with the syndrome.
Palavras-chave
Colon cancer, Cancer cachexia, Inflammation, Gut barrier, Intestine
Referências
  1. Argiles JM, 2006, NUTR HOSP, V21, P4
  2. Argiles JM, 2015, MEDIAT INFLAMM, DOI 10.1155/2015/182872
  3. Argiles JM, 2014, NAT REV CANCER, V14, P754, DOI 10.1038/nrc3829
  4. Argiles JM, 2011, EUR J PHARMACOL, V668, pS81, DOI 10.1016/j.ejphar.2011.07.007
  5. BARRY RE, 1974, GUT, V15, P562, DOI 10.1136/gut.15.7.562
  6. Carvalho ATP, 2003, J CLIN GASTROENTEROL, V36, P120, DOI 10.1097/00004836-200302000-00006
  7. Chang Victor T, 2005, J Support Oncol, V3, P377
  8. Cornick S, 2015, TISSUE BARRIERS, V3, DOI 10.4161/21688370.2014.982426
  9. CREAMER B, 1964, BRIT MED J, V2, P1435, DOI 10.1136/bmj.2.5422.1435
  10. de Matos-Neto EM, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00629
  11. di Trifiletti AA, 2013, CLIN NUTR, V32, P527, DOI 10.1016/j.clnu.2012.11.011
  12. Donohoe CL, 2011, GASTROENT RES PRACT, DOI 10.1155/2011/601434
  13. Evans WJ, 2008, CLIN NUTR, V27, P793, DOI 10.1016/j.clnu.2008.06.013
  14. Fry TJ, 2005, J IMMUNOL, V174, P6571, DOI 10.4049/jimmunol.174.11.6571
  15. Genton L, 2015, CLIN NUTR, V34, P341, DOI 10.1016/j.clnu.2014.10.003
  16. GILAT T, 1972, DIGESTION, V7, P147, DOI 10.1159/000197269
  17. Isidro RA, 2016, AM J PHYSIOL-GASTR L, V311, pG59, DOI 10.1152/ajpgi.00123.2016
  18. Jiang YJ, 2014, J CLIN GASTROENTEROL, V48, P131, DOI 10.1097/01.mcg.0000436437.83015.17
  19. Johansson MEV, 2014, INFLAMM BOWEL DIS, V20, P2124, DOI 10.1097/MIB.0000000000000117
  20. Kanai T, 2009, CURR OPIN GASTROEN, V25, P306, DOI 10.1097/MOG.0b013e32832bc627
  21. Klein GL, 2013, CURR OPIN SUPPORT PA, V7, P361, DOI 10.1097/SPC.0000000000000017
  22. Koch S, 2012, ANNU REV PATHOL-MECH, V7, P35, DOI 10.1146/annurev-pathol-011811-120905
  23. Laviano Alessandro, 2012, Critical Reviews in Oncogenesis, V17, P247
  24. Lee CG, 2001, J EXP MED, V194, P809, DOI 10.1084/jem.194.6.809
  25. LEE SH, 1985, J EXP MED, V161, P475, DOI 10.1084/jem.161.3.475
  26. Matsumoto T, 2005, GASTROENTEROLOGY, V128, P1851, DOI 10.1053/j.gastro.2005.03.085
  27. Mowat AM, 2014, NAT REV IMMUNOL, V14, P667, DOI 10.1038/nri3738
  28. Muzes G, 2012, WORLD J GASTROENTERO, V18, P5848, DOI 10.3748/wjg.v18.i41.5848
  29. Natividad JMM, 2013, PHARMACOL RES, V69, P42, DOI 10.1016/j.phrs.2012.10.007
  30. Okazawa A, 2004, CLIN EXP IMMUNOL, V136, P269, DOI 10.1111/j.1365-2249.2004.02431.x
  31. Penet MF, 2015, CANCER J, V21, P117, DOI 10.1097/PPO.0000000000000100
  32. Powell N, 2010, NAT REV GASTRO HEPAT, V7, P146, DOI 10.1038/nrgastro.2010.5
  33. Sandek A, 2009, CURR DRUG METAB, V10, P22, DOI 10.2174/138920009787048374
  34. Sawa Y, 2009, IMMUNITY, V30, P447, DOI 10.1016/j.immuni.2009.01.007
  35. Scharl M, 2013, GUT, V62, P63, DOI 10.1136/gutjnl-2011-300498
  36. Scholzen T, 2000, J CELL PHYSIOL, V182, P311, DOI 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9
  37. Sipos F, 2010, SCAND J GASTROENTERO, V45, P440, DOI 10.3109/00365521003624144
  38. Sipos F, 2010, PATHOL ONCOL RES, V16, P11, DOI 10.1007/s12253-009-9181-x
  39. Slattery ML, 2009, CANCER PREV RES, V2, P922, DOI 10.1158/1940-6207.CAPR-08-0191
  40. Solinas G, 2009, J LEUKOCYTE BIOL, V86, P1065, DOI 10.1189/jlb.0609385
  41. Staley C, 2017, APPL MICROBIOL BIOT, V101, P47, DOI 10.1007/s00253-016-8006-6
  42. Stenfeldt AL, 2004, IMMUNOLOGY, V112, P605, DOI 10.1111/j.1365-2567.2004.01906.x
  43. Suzuki K, 2011, PATHOL INT, V61, P228, DOI 10.1111/j.1440-1827.2011.02647.x
  44. Tamoutounour S, 2012, EUR J IMMUNOL, V42, P3150, DOI 10.1002/eji.201242847
  45. Thiesen S, 2014, J LEUKOCYTE BIOL, V95, P531, DOI 10.1189/jlb.0113021
  46. Ulmer TF, 2014, INT J SURG, V12, P426, DOI 10.1016/j.ijsu.2014.03.014
  47. van Roon JAG, 2005, ARTHRITIS RHEUM, V52, P1700, DOI 10.1002/art.21045
  48. von Haehling S, 2017, J CACHEXIA SARCOPENI, V8, P1081, DOI 10.1002/jcsm.12261
  49. Watson CJ, 2005, J CELL SCI, V118, P5221, DOI 10.1242/jcs.02630
  50. Williamson G, 2017, BIOCHEM PHARMACOL, V139, P24, DOI 10.1016/j.bcp.2017.03.012
  51. Wynn TA, 2012, NAT MED, V18, P1028, DOI 10.1038/nm.2807
  52. Yeung MMW, 2000, GUT, V47, P215, DOI 10.1136/gut.47.2.215