Rationale and population-based prospective cohort protocol for the disadvantaged populations at risk of decline in eGFR (CO-DEGREE)

Carregando...
Imagem de Miniatura
Citações na Scopus
27
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMJ PUBLISHING GROUP
Autores
GONZALEZ-QUIROZ, Marvin
NITSCH, Dorothea
HAMILTON, Sophie
GORDO, Cristina O'Callaghan
SARAN, Rajiv
GLASER, Jason
CORREA-ROTTER, Ricardo
JAKOBSSON, Kristina
SINGH, Ajay
GUNAWARDENA, Nalika
Citação
BMJ OPEN, v.9, n.9, article ID e031169, 9p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction A recently recognised form of chronic kidney disease (CKD) of unknown origin (CKDu) is afflicting communities, mostly in rural areas in several regions of the world. Prevalence studies are being conducted in a number of countries, using a standardised protocol, to estimate the distribution of estimated glomerular filtration rate (eGFR), and thus identify communities with a high prevalence of reduced glomerular filtration rate (GFR). In this paper, we propose a standardised minimum protocol for cohort studies in high-risk communities aimed at investigating the incidence of, and risk factors for, early kidney dysfunction. Methods and analysis This generic cohort protocol provides the information to establish a prospective population-based cohort study in low-income settings with a high prevalence of CKDu. This involves a baseline survey that included key elements from the DEGREE survey (eg, using the previously published DEGREE methodology) of a population-representative sample, and subsequent follow-up visits in young adults (without a pre-existing diagnosis of CKD (eGFR<60 mL/min/1.73m(2)), proteinuria or risk factors for CKD at baseline) over several years. Each visit involves a core questionnaire, and collection and storage of biological samples. Local capacity to measure serum creatinine will be required so that immediate feedback on kidney function can be provided to participants. After completion of follow-up, repeat measures of creatinine should be conducted in a central laboratory, using reference standards traceable to isotope dilution mass spectrometry (IDMS) quality control material to quantify the main outcome of eGFR decline over time, alongside a description of the early evolution of disease and risk factors for eGFR decline. Ethics and dissemination Ethical approval will be obtained by local researchers, and participants will provide informed consent before the study commences. Participants will typically receive feedback and advice on their laboratory results, and referral to a local health system where appropriate.
Palavras-chave
prospective cohort study, chronic kidney disease of unknown aetiology, generic cohort protocol, decline in kidney function
Referências
  1. American Diabetes Association, 2018, Diabetes Care, V41, pS13, DOI 10.2337/dc18-S002
  2. Andrassy KM, 2013, KIDNEY INT, V84, P622, DOI 10.1038/ki.2013.243
  3. [Anonymous], 2018, DIABETES CARE, V41, P2045, DOI 10.2337/dc18-su09
  4. Ben C, 2015, 2 INT WORKSH MES NEP
  5. Caplin B, 2017, BMC NEPHROL, V18, DOI 10.1186/s12882-016-0417-1
  6. Chobanian AV, 2003, HYPERTENSION, V42, P1206, DOI 10.1161/01.HYP.0000107251.49515.c2
  7. Correa-Rotter R, 2014, AM J KIDNEY DIS, V63, P506, DOI 10.1053/j.ajkd.2013.10.062
  8. Ekiti ME, 2018, BMC NEPHROL, V19, DOI 10.1186/s12882-017-0798-9
  9. Feldman HI, 2003, J AM SOC NEPHROL, V14, pS148, DOI 10.1097/01.ASN.0000070149.78399.CE
  10. Ganguli A, 2016, AM J KIDNEY DIS, V68, P344, DOI 10.1053/j.ajkd.2016.04.012
  11. Garcia-Trabanino R, 2017, NEFROLOGIA LATINOAME, V14, P39, DOI [10.1016/j.nefrol.2016.11.001, DOI 10.1016/J.NEFROL.2016.11.001]
  12. Garcia-Trabanino R, 2016, NEFROLOGIA, V36, P631, DOI 10.1016/j.nefro.2016.01.015
  13. Gonzalez-Quiroz M, 2018, J AM SOC NEPHROL, V29, P2200, DOI 10.1681/ASN.2018020151
  14. Gonzalez-Quiroz M, 2018, CLIN KIDNEY J, V11, P496, DOI 10.1093/ckj/sfx136
  15. Gonzalez-Quiroz M, 2017, BMC NEPHROL, V18, DOI 10.1186/s12882-016-0422-4
  16. Inker LA, 2012, NEW ENGL J MED, V367, P20, DOI 10.1056/NEJMoa1114248
  17. Jayasekara JMKB, 2013, CEYLON MED J, V58, P6, DOI 10.4038/cmj.v58i1.5356
  18. Jayasumana C, 2017, NEPHROL DIAL TRANSPL, V32, P234, DOI 10.1093/ndt/gfw346
  19. Jayatilake N, 2013, BMC NEPHROL, V14, DOI 10.1186/1471-2369-14-180
  20. Jha V, 2013, LANCET, V382, P260, DOI 10.1016/S0140-6736(13)60687-X
  21. Laws RL, 2015, INT J OCCUP ENV HEAL, V21, P241, DOI 10.1179/2049396714Y.0000000102
  22. Lozier M, 2016, REV PANAM SALUD PUBL, V40, P294
  23. Ministry of Health Nutrition and Indigenous Medicine, 2017, MED STAT UN ANN HLTH
  24. O'Donnell JK, 2011, NEPHROL DIAL TRANSPL, V26, P2798, DOI 10.1093/ndt/gfq385
  25. Open Data KIT, 2018, LONG CLIN STUD APP
  26. Orantes CM, 2014, MEDICC REV, V16, P23
  27. Orantes CM, 2011, MEDICC REV, V13, P14
  28. Ordunez P, 2018, J EPIDEMIOL COMMUN H, V72, P280, DOI 10.1136/jech-2017-210023
  29. Ordunez P, 2014, LANCET GLOB HEALTH, V2, pE440, DOI 10.1016/S2214-109X(14)70217-7
  30. Padala S, 2012, AM J KIDNEY DIS, V60, P217, DOI 10.1053/j.ajkd.2012.01.024
  31. Peraza S, 2012, AM J KIDNEY DIS, V59, P531, DOI 10.1053/j.ajkd.2011.11.039
  32. Rajapakse S, 2016, INT J OCCUP ENV HEAL, V22, P259, DOI 10.1080/10773525.2016.1203097
  33. Rajapurkar MM, 2012, BMC NEPHROL, V13, DOI 10.1186/1471-2369-13-10
  34. Torres C, 2010, AM J KIDNEY DIS, V55, P485, DOI 10.1053/j.ajkd.2009.12.012
  35. Wegman D., 2016, MESOAMERICAN NEPHROP
  36. Wesseling C, 2013, 1 INT RES WORKSH MES
  37. Wesseling C, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2016-011034
  38. Wesseling C, 2016, ENVIRON RES, V147, P125, DOI 10.1016/j.envres.2016.02.002
  39. Wesseling C, 2013, AM J PUBLIC HEALTH, V103, P1927, DOI 10.2105/AJPH.2013.301594
  40. WHO, 2016, WORKSH REP DES STEP