NF-kappa B System Is Chronically Activated and Promotes Glomerular Injury in Experimental Type 1 Diabetic Kidney Disease

Carregando...
Imagem de Miniatura
Citações na Scopus
30
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN PHYSIOLOGY, v.11, article ID 84, 11p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
High glucose concentration can activate TLR4 and NF-kappa B, triggering the production of proinflammatory mediators. We investigated whether the NF-kappa B pathway is involved in the pathogenesis and progression of experimental diabetic kidney disease (DKD) in a model of long-term type 1 diabetes mellitus (DM). Adult male Munich-Wistar rats underwent DM by a single streptozotocin injection, and were kept moderately hyperglycemic by daily insulin injections. After 12 months, two subgroups - progressors and non-progressors - could be formed based on the degree of glomerulosclerosis. Only progressors exhibited renal TLR4, NF-kappa B and IL-6 activation. This scenario was already present in rats with short-term DM (2 months), at a time when no overt glomerulosclerosis can be detected. Chronic treatment with the NF-kappa B inhibitor, pyrrolidine dithiocarbamate (PDTC), prevented activation of renal TLR4, NF-kappa B or IL-6, without interfering with blood glucose. PDTC prevented the development of glomerular injury/inflammation and oxidative stress in DM rats. In addition, the NF-kappa B p65 component was detected in sclerotic glomeruli and inflamed interstitial areas in biopsy material from patients with type 1 DM. These observations indicate that the renal NF-kappa B pathway plays a key role in the development and progression of experimental DKD, and can become an important therapeutic target in the quest to prevent the progression of human DKD.
Palavras-chave
diabetic kidney disease, glomerulosclerosis, NF-kappa B, innate immunity, pyrrolidine dithiocarbamate
Referências
  1. Arias SCA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056215
  2. Anrather J, 2006, J BIOL CHEM, V281, P5657, DOI 10.1074/jbc.M506172200
  3. Avila VF, 2019, HYPERTENS RES, V42, P779, DOI 10.1038/s41440-019-0226-6
  4. DOI T, 1992, P NATL ACAD SCI USA, V89, P2873, DOI 10.1073/pnas.89.7.2873
  5. Faustino VD, 2018, BIOSCIENCE REP, V38, DOI 10.1042/BSR20180762
  6. Foresto-Neto O, 2018, LAB INVEST, V98, P773, DOI 10.1038/s41374-018-0029-4
  7. FUJIHARA CK, 1992, DIABETES, V41, P286, DOI 10.2337/diabetes.41.3.286
  8. Fujihara CK, 2007, AM J PHYSIOL-RENAL, V292, pF92, DOI 10.1152/ajprenal.00184.2006
  9. Gross JL, 2005, DIABETES CARE, V28, P164, DOI 10.2337/diacare.28.1.164
  10. Gruden G, 2005, J AM SOC NEPHROL, V16, P688, DOI 10.1681/ASN.2004030251
  11. Lee FTH, 2004, J AM SOC NEPHROL, V15, P2139, DOI 10.1097/01.ASN.0000135055.61833.A8
  12. Lin M, 2012, J AM SOC NEPHROL, V23, P86, DOI 10.1681/ASN.2010111210
  13. Molitch ME, 2004, DIABETES CARE, V27, P1240, DOI 10.2337/diacare.27.5.1240-a
  14. Morgan MJ, 2011, CELL RES, V21, P103, DOI 10.1038/cr.2010.178
  15. Okabe C, 2013, AM J PHYSIOL-RENAL, V305, pF155, DOI 10.1152/ajprenal.00491.2012
  16. Rangan G, 2009, FRONT BIOSCI-LANDMRK, V14, P3496, DOI 10.2741/3467
  17. Teles F, 2009, KIDNEY INT, V75, P72, DOI 10.1038/ki.2008.528
  18. Utimura R, 2003, KIDNEY INT, V63, P209, DOI 10.1046/j.1523-1755.2003.00736.x
  19. van Beijnum JR, 2008, ANGIOGENESIS, V11, P91, DOI 10.1007/s10456-008-9093-5
  20. Verzola D, 2014, KIDNEY INT, V86, P1229, DOI 10.1038/ki.2014.116
  21. WALLENSTEIN S, 1980, CIRC RES, V47, P1, DOI 10.1161/01.RES.47.1.1
  22. Wang Y., 2016, J ASIAN CONCR FED, V2, P1, DOI 10.1155/2016/2543268
  23. Wei MM, 2015, MOL IMMUNOL, V68, P261, DOI 10.1016/j.molimm.2015.09.002
  24. Wendt TM, 2003, AM J PATHOL, V162, P1123, DOI 10.1016/S0002-9440(10)63909-0
  25. YAN SD, 1994, J BIOL CHEM, V269, P9889
  26. Yang PP, 2016, RENAL FAILURE, V38, P514, DOI 10.3109/0886022X.2016.1145515
  27. ZATZ R, 1986, J CLIN INVEST, V77, P1925, DOI 10.1172/JCI112521