Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorFERNANDES, Tiago Lazzaretti
dc.contributor.authorGOMOLL, Andreas H.
dc.contributor.authorLATTERMANN, Christian
dc.contributor.authorHERNANDEZ, Arnaldo Jose
dc.contributor.authorBUENO, Daniela Franco
dc.contributor.authorAMANO, Mariane Tami
dc.identifier.citationFRONTIERS IN IMMUNOLOGY, v.11, article ID 111, 9p, 2020
dc.description.abstractCartilage lesions and osteoarthritis (OA) presents an ever-increasing clinical and socioeconomic burden. Synovial inflammation and articular inflammatory environment are the key factor for chondrocytes apoptosis and hypertrophy, ectopic bone formation and OA progression. To effectively treat OA, it is critical to develop a drug that skews inflammation toward a pro-chondrogenic microenvironment. In this narrative and critical review, we aim to see the potential use of immune cells modulation or cell therapy as therapeutic alternatives to OA patients. Macrophages are immune cells that are present in synovial lining, with different roles depending on their subtypes. These cells can polarize to pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes, being the latter associated with wound-healing by the production of ARG-1 and pro-chondrogenic cytokines, such as IL-10, IL-1RA, and TGF-b. Emerging evidence reveals that macrophage shift can be determined by several stimuli, apart from the conventional in vitro IL-4, IL-13, and IL-10. Evidences show the potential of physical exercise to induce type 2 response, favoring M2 polarization. Moreover, macrophages in contact with oxLDL have effect on the production of anabolic mediators as TGF-b. In the same direction, type II collagen, that plays a critical role in development and maturation process of chondrocytes, can also induce M2 macrophages, increasing TGF-b. The mTOR pathway activation in macrophages was shown to be able to polarize macrophages in vitro, though further studies are required. The possibility to use mesenchymal stem cells (MSCs) in cartilage restoration have a more concrete literature, besides, MSCs also have the capability to induce M2 macrophages. In the other direction, M1 polarized macrophages inhibit the proliferation and viability of MSCs and impair their ability to immunosuppress the environment, preventing cartilage repair. Therefore, even though MSCs therapeutic researches advances, other sources of M2 polarization are attractive issues, and further studies will contribute to the possibility to manipulate this polarization and to use it as a therapeutic approach in OA patients.eng
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2017/05774-5]
dc.description.sponsorshipCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)CAPES [88881.171651/2018-01]
dc.description.sponsorshipInternational Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine
dc.description.sponsorshipOrthopaedic Research and Education Foundation (ISAKOS Osteoarthritis Grant-2018)
dc.description.sponsorshipSirio-Libanes Hospital
dc.description.sponsorshipIOT HC-FMUSP Hospital das Clinicas, Faculdade de Medicina da USP
dc.publisherFRONTIERS MEDIA SAeng
dc.relation.ispartofFrontiers in Immunology
dc.subjectM2 macrophageseng
dc.subjectcartilage regenerationeng
dc.subjectsynovial inflammationeng
dc.subjectmesenchymal stem cellseng
dc.subjectarticular cartilageeng
dc.subjectcell therapyeng
dc.subject.otherautologous chondrocyte implantationeng
dc.subject.othermesenchymal stem-cellseng
dc.subject.othersynovial macrophageseng
dc.subject.otherstromal cellseng
dc.titleMacrophage: A Potential Target on Cartilage Regenerationeng
dc.rights.holderCopyright FRONTIERS MEDIA SAeng
dc.type.versionpublishedVersioneng, Andreas H.:Hosp Special Surg, 535 E 70th St, New York, NY 10021 USA, Christian:Harvard Med Sch, Dept Orthoped Surg, Ctr Cartilage Repair & Sports Med, Brigham & Womens Hosp, Boston, MA 02115 USA, Daniela Franco:Hosp Sirio Libanes, Sao Paulo, Brazil, Mariane Tami:Hosp Sirio Libanes, Sao Paulo, Brazil
hcfmusp.relation.referenceAmano MT, 2018, INT IMMUNOPHARMACOL, V64, P151, DOI 10.1016/j.intimp.2018.08.020eng
hcfmusp.relation.referenceAriffin SHZ, 2012, SCI WORLD J, DOI 10.1100/2012/827149eng
hcfmusp.relation.referenceBarminko JA, 2014, BIOTECHNOL BIOENG, V111, P2239, DOI 10.1002/bit.25282eng
hcfmusp.relation.referenceBaroja-Mazo Alberto, 2016, World J Transplant, V6, P183, DOI 10.5500/wjt.v6.i1.183eng
hcfmusp.relation.referenceBenoit M, 2008, J IMMUNOL, V181, P3733, DOI 10.4049/jimmunol.181.6.3733eng
hcfmusp.relation.referenceBondeson J, 2010, ARTHRITIS RHEUM-US, V62, P647, DOI 10.1002/art.27290eng
hcfmusp.relation.referenceByles V, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3834eng
hcfmusp.relation.referenceCastrogiovanni P, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20030511eng
hcfmusp.relation.referenceChahal J, 2019, STEM CELL TRANSL MED, V8, P746, DOI 10.1002/sctm.18-0183eng
hcfmusp.relation.referenceConaghan PG, 2019, NAT REV RHEUMATOL, V15, P355, DOI 10.1038/s41584-019-0221-yeng
hcfmusp.relation.referenceCulemann S, 2019, NATURE, V572, P670, DOI 10.1038/s41586-019-1471-1eng
hcfmusp.relation.referenceDai ML, 2018, BIOMATERIALS, V180, P91, DOI 10.1016/j.biomaterials.2018.07.011eng
hcfmusp.relation.referencede Munter W, 2017, OSTEOARTHR CARTILAGE, V25, P118, DOI 10.1016/j.joca.2016.07.020eng
hcfmusp.relation.referencede Munter W, 2016, RHEUMATOLOGY, V55, P16, DOI 10.1093/rheumatology/kev270eng
hcfmusp.relation.referenceDesando G, 2013, ARTHRITIS RES THER, V15, DOI 10.1186/ar4156eng
hcfmusp.relation.referenceDominici M, 2006, CYTOTHERAPY, V8, P315, DOI 10.1080/14653240600855905eng
hcfmusp.relation.referenceEngelholm LH, 2003, J CELL BIOL, V160, P1009, DOI 10.1083/jcb.200211091eng
hcfmusp.relation.referenceFahy N, 2014, OSTEOARTHR CARTILAGE, V22, P1167, DOI 10.1016/j.joca.2014.05.021eng
hcfmusp.relation.referenceFarr Jack, 2016, J Clin Orthop Trauma, V7, P183, DOI 10.1016/j.jcot.2016.05.001eng
hcfmusp.relation.referenceFernandes TL, 2020, TISSUE ENG PART B-RE, V26, P1, DOI [10.1089/ten.teb.2019.0140, 10.1089/ten.TEB.2019.0140]eng
hcfmusp.relation.referenceFernandes TL, 2018, TISSUE ENG PART C-ME, V24, P709, DOI [10.1089/ten.tec.2018.0219, 10.1089/ten.TEC.2018.0219]eng
hcfmusp.relation.referenceFernandes TL, 2018, STEM CELL REV REP, V14, P734, DOI 10.1007/s12015-018-9820-2eng
hcfmusp.relation.referenceFestuccia WT, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095432eng
hcfmusp.relation.referenceFibbe WE, 2007, ANN NY ACAD SCI, V1106, P272, DOI 10.1196/annals.1392.025eng
hcfmusp.relation.referenceFlanigan DC, 2010, MED SCI SPORT EXER, V42, P1795, DOI 10.1249/MSS.0b013e3181d9eea0eng
hcfmusp.relation.referenceGomoll AH, 2010, KNEE SURG SPORT TR A, V18, P434, DOI 10.1007/s00167-010-1072-xeng
hcfmusp.relation.referenceGriffin TM, 2019, CLIN EXP RHEUMATOL, V37, P57eng
hcfmusp.relation.referenceHaltmayer E, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0214709eng
hcfmusp.relation.referenceHamilton Amanda M, 2019, PLoS One, V14, pe0214107, DOI 10.1371/journal.pone.0214107eng
hcfmusp.relation.referenceHan SA, 2014, TISSUE ENG PT A, V20, P2680, DOI [10.1089/ten.tea.2013.0656, 10.1089/ten.TEA.2013.0656]eng
hcfmusp.relation.referenceHansson GK, 2006, ANNU REV PATHOL-MECH, V1, P297, DOI 10.1146/annurev.pathol.1.110304.100100eng
hcfmusp.relation.referenceHarrell CR, 2019, BIOMED PHARMACOTHER, V109, P2318, DOI 10.1016/j.biopha.2018.11.099eng
hcfmusp.relation.referenceHeldens GTH, 2012, TISSUE ENG PT A, V18, P45, DOI [10.1089/ten.TEA.2011.0083, 10.1089/ten.tea.2011.0083]eng
hcfmusp.relation.referenceHickery MS, 2003, J BIOL CHEM, V278, P53063, DOI 10.1074/jbc.M209632200eng
hcfmusp.relation.referenceInoki K, 2002, NAT CELL BIOL, V4, P648, DOI 10.1038/ncb839eng
hcfmusp.relation.referenceJames MJ, 1998, LIPIDS, V33, P1115, DOI 10.1007/s11745-998-0313-8eng
hcfmusp.relation.referenceJones RG, 2017, IMMUNITY, V46, P730, DOI 10.1016/j.immuni.2017.04.028eng
hcfmusp.relation.referenceKrausgruber T, 2011, NAT IMMUNOL, V12, P231, DOI 10.1038/ni.1990eng
hcfmusp.relation.referenceKruger JP, 2012, J ORTHOP SURG RES, V7, DOI 10.1186/1749-799X-7-10eng
hcfmusp.relation.referenceKubosch EJ, 2018, CURR STEM CELL RES T, V13, P174, DOI 10.2174/1574888X12666171002111026eng
hcfmusp.relation.referenceLabinsky H, 2020, ARTHRITIS RHEUMATOL, V72, P598, DOI 10.1002/art.41161eng
hcfmusp.relation.referenceLacey DC, 2012, J IMMUNOL, V188, P5752, DOI 10.4049/jimmunol.1103426eng
hcfmusp.relation.referenceLepage SIM, 2019, TISSUE ENG PART B-RE, V25, P114, DOI [10.1089/ten.teb.2018.0122, 10.1089/ten.TEB.2018.0122]eng
hcfmusp.relation.referenceLeyendecker A, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02056eng
hcfmusp.relation.referenceMadsen DH, 2013, J CELL BIOL, V202, P951, DOI 10.1083/jcb.201301081eng
hcfmusp.relation.referenceManferdini C, 2017, OSTEOARTHR CARTILAGE, V25, P1161, DOI 10.1016/j.joca.2017.01.011eng
hcfmusp.relation.referenceManferdini C, 2016, ARTHRITIS RES THER, V18, DOI 10.1186/s13075-016-0983-4eng
hcfmusp.relation.referenceMantovani A, 2013, J PATHOL, V229, P176, DOI 10.1002/path.4133eng
hcfmusp.relation.referenceMartinez-Pomares L, 2006, EUR J IMMUNOL, V36, P1074, DOI 10.1002/eji.200535685eng
hcfmusp.relation.referenceMills CD, 2000, J IMMUNOL, V164, P6166, DOI 10.4049/jimmunol.164.12.6166eng
hcfmusp.relation.referenceMurray PJ, 2014, IMMUNITY, V41, P14, DOI 10.1016/j.immuni.2014.06.008eng
hcfmusp.relation.referenceNiemeyer P, 2014, INT ORTHOP, V38, P2065, DOI 10.1007/s00264-014-2368-0eng
hcfmusp.relation.referenceO'Brien K, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18040774eng
hcfmusp.relation.referenceOchi M, 2004, ARTIF ORGANS, V28, P28, DOI 10.1111/j.1525-1594.2004.07317.xeng
hcfmusp.relation.referenceOliviero F, 2012, CLIN CHIM ACTA, V413, P303, DOI 10.1016/j.cca.2011.10.019eng
hcfmusp.relation.referencePap T, 2015, NAT REV RHEUMATOL, V11, P606, DOI 10.1038/nrrheum.2015.95eng
hcfmusp.relation.referencePark YB, 2017, STEM CELL TRANSL MED, V6, P613, DOI 10.5966/sctm.2016-0157eng
hcfmusp.relation.referencePerera JR, 2012, ANN ROY COLL SURG, V94, P381, DOI 10.1308/003588412X13171221592573eng
hcfmusp.relation.referencePlatanitis E, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02542eng
hcfmusp.relation.referenceProckop DJ, 2009, MOL THER, V17, P939, DOI 10.1038/mt.2009.62eng
hcfmusp.relation.referenceRaes G, 2005, J IMMUNOL, V174, P6561, DOI 10.4049/jimmunol.174.11.6561eng
hcfmusp.relation.referenceRios FJ, 2013, MEDIAT INFLAMM, V2013, DOI 10.1155/2013/198193eng
hcfmusp.relation.referenceRutgers M, 2013, TISSUE ENG PT A, V19, P59, DOI [10.1089/ten.tea.2011.0416, 10.1089/ten.TEA.2011.0416]eng
hcfmusp.relation.referenceSamuelson EM, 2012, AM J SPORT MED, V40, P1252, DOI 10.1177/0363546512441586eng
hcfmusp.relation.referenceSchelbergen RF, 2014, OSTEOARTHR CARTILAGE, V22, P1158, DOI 10.1016/j.joca.2014.05.022eng
hcfmusp.relation.referenceSeifert O, 2012, J INFLAMM-LOND, V9, DOI 10.1186/1476-9255-9-43eng
hcfmusp.relation.referenceShapouri-Moghaddam A, 2018, J CELL PHYSIOL, V233, P6425, DOI 10.1002/jcp.26429eng
hcfmusp.relation.referenceShen J, 2014, J AM ACAD ORTHOP SUR, V22, P467, DOI 10.5435/JAAOS-22-07-467eng
hcfmusp.relation.referenceShimomura K, 2015, CARTILAGE, V6, p13S, DOI 10.1177/1947603515571002eng
hcfmusp.relation.referenceShimomura K, 2010, BIOMATERIALS, V31, P8004, DOI 10.1016/j.biomaterials.2010.07.017eng
hcfmusp.relation.referenceShowery JE, 2016, J ARTHROPLASTY, V31, P2108, DOI 10.1016/j.arth.2016.03.026eng
hcfmusp.relation.referenceSTEINBERG D, 1989, NEW ENGL J MED, V320, P915eng
hcfmusp.relation.referenceTardito S, 2019, AUTOIMMUN REV, V18, DOI 10.1016/j.autrev.2019.102397eng
hcfmusp.relation.referenceTarique AA, 2015, AM J RESP CELL MOL, V53, P676, DOI 10.1165/rcmb.2015-0012OCeng
hcfmusp.relation.referenceTu JJ, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01146eng
hcfmusp.relation.referenceTuan RS, 2013, J AM ACAD ORTHOP SUR, V21, P303, DOI 10.5435/JAAOS-21-05-303eng
hcfmusp.relation.referenceWaterman RS, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010088eng
hcfmusp.relation.referenceWood MJ, 2019, JCI INSIGHT, V4, DOI 10.1172/jci.insight.125325eng
hcfmusp.relation.referenceYlostalo JH, 2012, STEM CELLS, V30, P2283, DOI 10.1002/stem.1191eng
hcfmusp.relation.referenceZhang HY, 2018, ANN RHEUM DIS, V77, P1524, DOI 10.1136/annrheumdis-2018-213450eng
hcfmusp.relation.referenceZhu LN, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5696eng
hcfmusp.relation.referenceZhuo Q, 2012, NAT REV RHEUMATOL, V8, P729, DOI 10.1038/nrrheum.2012.135eng
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/MOT
Departamento de Ortopedia e Traumatologia - FM/MOT

Artigos e Materiais de Revistas Científicas - HC/IOT
Instituto de Ortopedia e Traumatologia - HC/IOT

Artigos e Materiais de Revistas Científicas - LIM/41
LIM/41 - Laboratório de Investigação Médica do Sistema Músculoesquelético

Files in This Item:
File Description SizeFormat 
art_FERNANDES_Macrophage_A_Potential_Target_on_Cartilage_Regeneration_2020.PDFpublishedVersion (English)547.39 kBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.