Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials

Nenhuma Miniatura disponível
Citações na Scopus
29
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS LTD
Autores
DWORATZEK, Elke
EBNER, Nicole
HAEHLING, Stephan Von
Citação
EXPERT OPINION ON INVESTIGATIONAL DRUGS, v.29, n.8, p.881-891, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction Skeletal muscle wasting is a frequent clinical problem encountered in patients with chronic diseases. Increased levels of inflammatory markers play a role in the imbalance between muscle protein synthesis and degradation. Although testosterone has long been proposed as a treatment for patients with muscle wasting, undesirable side effects have raised concerns about prostatic hypertrophy in men as well as virilization in women. Selective androgen receptor modulators (SARMs) have demonstrated similar results like testosterone at improving lean body mass (LBM) with less side effects on androgen-dependent tissue. Areas covered This review outlines the ongoing clinical development in the field of SARMs and their effectiveness in improving body composition and physical function. The included articles were collected at pubmed.gov and analyzed integrally. Expert opinion There is an unmet clinical need for safe and effective anabolic compounds such as SARMs. Despite the effect on LBM shown by SARMs in phase II clinical trials, results on improved physical function and muscle strength are still lacking and long-term outcomes have to be assessed in these patients. Moreover, there is a need to determine the effect of resistance exercise training and protein intake associated with SARMs in the treatment of patients with muscle wasting.
Palavras-chave
Androgen receptor, cachexia, muscle wasting, sarcopenia, selective androgen receptor modulators, testosterone
Referências
  1. Aikawa K, 2015, BIOORGAN MED CHEM, V23, P2568, DOI 10.1016/j.bmc.2015.03.032
  2. Allan G, 2008, J STEROID BIOCHEM, V110, P207, DOI 10.1016/j.jsbmb.2007.10.012
  3. Allan GF, 2007, ENDOCRINE, V32, P41, DOI 10.1007/s12020-007-9005-2
  4. Argiles JM, 2015, CURR OPIN PHARMACOL, V22, P100, DOI 10.1016/j.coph.2015.04.003
  5. Basaria S, 2001, J CLIN ENDOCR METAB, V86, P5108, DOI 10.1210/jc.86.11.5108
  6. Basaria S, 2015, JAMA-J AM MED ASSOC, V314, P570, DOI 10.1001/jama.2015.8881
  7. Basaria S, 2013, J GERONTOL A-BIOL, V68, P87, DOI 10.1093/gerona/gls078
  8. Bauer J, 2019, J CACHEXIA SARCOPENI, V10, P956, DOI 10.1002/jcsm.12483
  9. Bhattacharya I, 2016, CLIN THER, V38, P1401, DOI 10.1016/j.clinthera.2016.03.025
  10. Blanque R, 2014, BMC MUSCULOSKEL DIS, V15, DOI 10.1186/1471-2474-15-291
  11. Caminiti G, 2009, J AM COLL CARDIOL, V54, P919, DOI 10.1016/j.jacc.2009.04.078
  12. Chekler ELP, 2014, J MED CHEM, V57, P2462, DOI 10.1021/jm401625b
  13. Chisamore MJ, 2016, J STEROID BIOCHEM, V163, P88, DOI 10.1016/j.jsbmb.2016.04.007
  14. Clark RV, 2017, BRIT J CLIN PHARMACO, V83, P2179, DOI 10.1111/bcp.13316
  15. Coats AJS, 2016, J CACHEXIA SARCOPENI, V7, P355, DOI 10.1002/jcsm.12126
  16. Coss CC, 2016, INVEST NEW DRUG, V34, P458, DOI 10.1007/s10637-016-0353-8
  17. Cozzoli A, 2013, PHARMACOL RES, V72, P9, DOI 10.1016/j.phrs.2013.03.003
  18. Crawford J, 2016, CURR ONCOL REP, V18, DOI 10.1007/s11912-016-0522-0
  19. Crawford J, 2014, J CLIN ONCOL, V32, DOI 10.1200/jco.2014.32.15_suppl.9618
  20. Currow D, 2017, ANN ONCOL, V28, P1949, DOI 10.1093/annonc/mdx192
  21. Dalton JT, 2011, J CACHEXIA SARCOPENI, V2, P153, DOI 10.1007/s13539-011-0034-6
  22. Dalton JT, 1998, BIOCHEM BIOPH RES CO, V244, P1, DOI 10.1006/bbrc.1998.8209
  23. Dobs AS, 2013, LANCET ONCOL, V14, P335, DOI 10.1016/S1470-2045(13)70055-X
  24. Dubois V, 2015, ENDOCRINOLOGY, V156, P4522, DOI 10.1210/en.2015-1479
  25. Ebner N, 2019, J CACHEXIA SARCOPENI, V10, P218, DOI 10.1002/jcsm.12408
  26. Ebner N, 2018, J CACHEXIA SARCOPENI, V9, P176, DOI 10.1002/jcsm.12290
  27. Fulster S, 2013, EUR HEART J, V34, P512, DOI 10.1093/eurheartj/ehs381
  28. Gao WQ, 2005, ENDOCRINOLOGY, V146, P4887, DOI 10.1210/en.2005-0572
  29. Gao WQ, 2005, CHEM REV, V105, P3352, DOI 10.1021/cr020456u
  30. Garber K, 2016, NAT BIOTECHNOL, V34, P458, DOI 10.1038/nbt.3557
  31. GTx I, 2018, GTX ANNOUNCED NEW DA
  32. Hamann LG, 1999, J MED CHEM, V42, P210, DOI 10.1021/jm9806648
  33. Hanada K, 2003, BIOL PHARM BULL, V26, P1563, DOI 10.1248/bpb.26.1563
  34. Heemers HV, 2007, ENDOCR REV, V28, P778, DOI 10.1210/er.2007-0019
  35. HOLMANG S, 1993, PROSTATE, V23, P99, DOI 10.1002/pros.2990230203
  36. Iba H, 2019, BIOL PHARM BULL, V42, P2009, DOI 10.1248/bpb.b19-00499
  37. Jayaraman A, 2014, ENDOCRINOLOGY, V155, P1398, DOI 10.1210/en.2013-1725
  38. Jones A, 2010, ENDOCRINOLOGY, V151, P3706, DOI 10.1210/en.2010-0150
  39. Kato K, 2020, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.03138
  40. Kim J, 2013, XENOBIOTICA, V43, P993, DOI 10.3109/00498254.2013.788233
  41. Komrakova M, 2020, CALCIFIED TISSUE INT, V106, P147, DOI 10.1007/s00223-019-00613-1
  42. Krishnan V, 2018, ANDROLOGY-US, V6, P455, DOI 10.1111/andr.12479
  43. Kuki A, 2019, BMC NEPHROL, V20, DOI 10.1186/s12882-019-1370-6
  44. Liu P, 2017, MATURITAS, V103, P16, DOI 10.1016/j.maturitas.2017.04.007
  45. Miller CP, 2011, ACS MED CHEM LETT, V2, P124, DOI 10.1021/ml1002508
  46. Miner JN, 2007, ENDOCRINOLOGY, V148, P363, DOI 10.1210/en.2006-0793
  47. Morimoto M, 2017, ONCOL LETT, V14, P8066, DOI 10.3892/ol.2017.7200
  48. Narayanan R, 2018, MOL CELL ENDOCRINOL, V465, P134, DOI 10.1016/j.mce.2017.06.013
  49. Negro-Vilar A, 1999, J CLIN ENDOCR METAB, V84, P3459, DOI 10.1210/jc.84.10.3459
  50. Neil D, 2018, J CLIN ENDOCR METAB, V103, P3215, DOI 10.1210/jc.2017-02644
  51. Nique F, 2012, J MED CHEM, V55, P8236, DOI 10.1021/jm300281x
  52. Ostrowski J, 2007, ENDOCRINOLOGY, V148, P4, DOI 10.1210/en.2006-0843
  53. Papanicolaou DA, 2013, J NUTR HEALTH AGING, V17, P533, DOI 10.1007/s12603-013-0335-x
  54. Reiter M, 2010, HORM MOL BIOL CLIN I, V1, P73, DOI 10.1515/HMBCI.2010.007
  55. Ryan AM, 2019, NUTRITION, V67-68, DOI 10.1016/j.nut.2019.06.020
  56. Schmidt A, 2010, J BIOL CHEM, V285, P17054, DOI 10.1074/jbc.M109.099002
  57. Sheffield M, 2014, STEINER RESIGNS GTX
  58. Singam ERA, 2019, J PHYS CHEM B, V123, P7657, DOI 10.1021/acs.jpcb.9b05654
  59. Smith CL, 2004, ENDOCR REV, V25, P45, DOI 10.1210/er.2003-0023
  60. Solheim TS, 2018, BMJ SUPPORT PALLIAT, V8, P258, DOI 10.1136/bmjspcare-2017-001440
  61. Temel JS, 2016, LANCET ONCOL, V17, P519, DOI 10.1016/S1470-2045(15)00558-6
  62. Thevis M, 2018, MOL CELL ENDOCRINOL, V464, P34, DOI 10.1016/j.mce.2017.01.040
  63. Thevis M, 2018, EUR J MASS SPECTROM, V24, P145, DOI 10.1177/1469066717731228
  64. Thevis M, 2011, DRUG TEST ANAL, V3, P1, DOI 10.1002/dta.245
  65. Travison TG, 2011, J GERONTOL A-BIOL, V66, P1090, DOI 10.1093/gerona/glr100
  66. URMAN B, 1991, OBSTET GYNECOL, V77, P595
  67. Vajda EG, 2009, J BONE MINER RES, V24, P231, DOI [10.1359/jbmr.081007, 10.1359/JBMR.081007]
  68. Vajda EG, 2009, J PHARMACOL EXP THER, V328, P663, DOI 10.1124/jpet.108.146811
  69. Viking T, 2014, VIKING SIGNS BROAD L
  70. Wu D, 2006, DRUG METAB DISPOS, V34, P483, DOI 10.1124/dmd.105.006643
  71. Yu ZY, 2017, CLIN CANCER RES, V23, P7608, DOI 10.1158/1078-0432.CCR-17-0670
  72. Zierau O, 2019, J STEROID BIOCHEM, V189, P81, DOI 10.1016/j.jsbmb.2019.02.014