A comparative analysis of noise properties of stochastic binary models for a self-repressing and for an externally regulating gene

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER INST MATHEMATICAL SCIENCES-AIMS
Citação
MATHEMATICAL BIOSCIENCES AND ENGINEERING, v.17, n.5, p.5477-5503, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This manuscript presents a comparison of noise properties exhibited by two stochastic binary models for: (i) a self-repressing gene; (ii) a repressed or activated externally regulating one. The stochastic models describe the dynamics of probability distributions governing two random variables, namely, protein numbers and the gene state as ON or OFF. In a previous work, we quantify noise in protein numbers by means of its Fano factor and write this quantity as a function of the covariance between the two random variables. Then we show that distributions governing the number of gene products can be super-Fano, Fano or sub-Fano if the covariance is, respectively, positive, null or negative. The latter condition is exclusive for the self-repressing gene and our analysis shows the conditions for which the Fano factor is a sufficient classifier of fluctuations in gene expression. In this work, we present the conditions for which the noise on the number of gene products generated from a self-repressing gene or an externally regulating one are quantitatively similar. That is important for inference of gene regulation from noise in gene expression quantitative data. Our results contribute to a classification of noise function in biological systems by theoretically demonstrating the mechanisms underpinning the higher precision in expression of a self-repressing gene in comparison with an externally regulated one.
Palavras-chave
noise in gene regulatory models, stochastic gene regulation, binary gene model, fluctuations on gene expression
Referências
  1. Abramowitz M., 1972, HDB MATH FUNCTIONS F, V55
  2. Anastas JN, 2013, NAT REV CANCER, V13, P11, DOI 10.1038/nrc3419
  3. Andersson R, 2020, NAT REV GENET, V21, P71, DOI 10.1038/s41576-019-0173-8
  4. Ansel J, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000049
  5. Arias AM, 2006, NAT REV GENET, V7, P34, DOI 10.1038/nrg1750
  6. Bakk A, 2004, BIOPHYS J, V86, P58, DOI 10.1016/S0006-3495(04)74083-7
  7. Balazsi G, 2011, CELL, V144, P910, DOI 10.1016/j.cell.2011.01.030
  8. Becskei A, 2000, NATURE, V405, P590, DOI 10.1038/35014651
  9. Blake WJ, 2003, NATURE, V422, P633, DOI 10.1038/nature01546
  10. Brock A, 2015, NAT REV CANCER, V15, P499, DOI 10.1038/nrc3959
  11. Cao ZX, 2020, P NATL ACAD SCI USA, V117, P4682, DOI 10.1073/pnas.1910888117
  12. Cao ZX, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05822-0
  13. Chalancon G, 2012, TRENDS GENET, V28, P221, DOI 10.1016/j.tig.2012.01.006
  14. Cheb-Terrab E. S., PREPRINT
  15. Chetverina D, 2017, BIOESSAYS, V39, DOI 10.1002/bies.201600233
  16. Choubey S, 2015, PLOS COMPUT BIOL, V11, DOI 10.1371/journal.pcbi.1004345
  17. Cooper G. M., 2000, CELL MOL APPROACH
  18. Crudu A, 2009, BMC SYST BIOL, V3, DOI 10.1186/1752-0509-3-89
  19. DELBRUCK M, 1940, J CHEM PHYS, V8, P120, DOI 10.1063/1.1750549
  20. Elowitz MB, 2002, SCIENCE, V297, P1183, DOI 10.1126/science.1070919
  21. Fabian MR, 2010, ANNU REV BIOCHEM, V79, P351, DOI 10.1146/annurev-biochem-060308-103103
  22. Farquhar KS, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10330-w
  23. Fiziev P. P., PREPRINT
  24. Fournier T, 2007, BIOINFORMATICS, V23, P3185, DOI 10.1093/bioinformatics/btm490
  25. Fulco CP, 2019, NAT GENET, V51, P1664, DOI 10.1038/s41588-019-0538-0
  26. Gama LR, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22040479
  27. Grima R, 2012, J CHEM PHYS, V137, DOI 10.1063/1.4736721
  28. Gronlund A, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2867
  29. Hallikas O, 2006, CELL, V124, P47, DOI 10.1016/j.cell.2005.10.042
  30. HAWLEY DK, 1982, J MOL BIOL, V157, P493, DOI 10.1016/0022-2836(82)90473-9
  31. Heemskerk I, 2019, ELIFE, V8, DOI 10.7554/eLife.40526
  32. Holehouse J, 2020, BIOPHYS J, V118, P1517, DOI 10.1016/j.bpj.2020.02.016
  33. Hooshangi S, 2006, CHAOS, V16, DOI 10.1063/1.2208927
  34. Hornos JEM, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.051907
  35. Innocentini GCP, 2007, J MATH BIOL, V55, P413, DOI 10.1007/s00285-007-0090-x
  36. Innocentini GCP, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4905217
  37. Iyer-Biswas S, 2009, PHYS REV E, V79, DOI 10.1103/PhysRevE.79.031911
  38. Jia C, 2020, J CHEM PHYS, V152, DOI 10.1063/1.5144578
  39. Kim AR, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003243
  40. Kumar N, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.268105
  41. Kuwahara H, 2015, INTEGR BIOL-UK, V7, P1622, DOI 10.1039/c5ib00107b
  42. Lepzelter D, 2010, CHEM PHYS LETT, V490, P216, DOI 10.1016/j.cplett.2010.03.029
  43. Marciano DC, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.258104
  44. Mirabelli CK, 2019, SCI SIGNAL, V12, DOI 10.1126/scisignal.aay4494
  45. Mozziconacci J, 2020, J MOL BIOL, V432, P712, DOI 10.1016/j.jmb.2019.10.017
  46. Munsky B, 2012, SCIENCE, V336, P183, DOI 10.1126/science.1216379
  47. Nevozhay D, 2009, P NATL ACAD SCI USA, V106, P5123, DOI 10.1073/pnas.0809901106
  48. Pare A, 2009, CURR BIOL, V19, P2037, DOI 10.1016/j.cub.2009.10.028
  49. Park K., PREPRINT
  50. PECCOUD J, 1995, THEOR POPUL BIOL, V48, P222, DOI 10.1006/tpbi.1995.1027
  51. Pedraza JM, 2005, SCIENCE, V307, P1965, DOI 10.1126/science.1109090
  52. Prata GN, 2016, PHYS REV E, V93, DOI 10.1103/PhysRevE.93.022403
  53. Raj A, 2006, PLOS BIOL, V4, P1707, DOI 10.1371/journal.pbio.0040309
  54. Ramos AF, 2011, PHYS REV E, V83, DOI 10.1103/PhysRevE.83.062902
  55. Ramos AF, 2010, IET SYST BIOL, V4, P311, DOI 10.1049/iet-syb.2010.0058
  56. Ramos A. F., 2020, PROGNOSTIC THERAPEUT, P257
  57. Ramos AF, 2019, J CHEM PHYS, V151, DOI 10.1063/1.5105361
  58. Ramos AF, 2015, PHYS REV E, V91, DOI 10.1103/PhysRevE.91.020701
  59. Ramos AF, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.108103
  60. Raser JM, 2005, SCIENCE, V309, P2010, DOI 10.1126/science.1105891
  61. Reeves GT, 2019, J BIOL ENG, V13, DOI 10.1186/s13036-019-0190-3
  62. Rosenfeld N, 2002, J MOL BIOL, V323, P785, DOI 10.1016/S0022-2836(02)00994-4
  63. Rosenfeld N, 2006, BIOPHYS J, V91, P759, DOI 10.1529/biophysj.105.073098
  64. Sancar A, 2010, FEBS LETT, V584, P2618, DOI 10.1016/j.febslet.2010.03.017
  65. Sanchez A, 2013, SCIENCE, V342, P1188, DOI 10.1126/science.1242975
  66. SAVAGEAU MA, 1974, NATURE, V252, P546, DOI 10.1038/252546a0
  67. Sepulveda LA, 2016, SCIENCE, V351, P1218, DOI 10.1126/science.aad0635
  68. Shahrezaei V, 2008, P NATL ACAD SCI USA, V105, P17256, DOI 10.1073/pnas.0803850105
  69. Shen-Orr SS, 2002, NAT GENET, V31, P64, DOI 10.1038/ng881
  70. Sneppen K, 2017, REP PROG PHYS, V80, DOI 10.1088/1361-6633/aa5aeb
  71. Subramanian A, 2005, P NATL ACAD SCI USA, V102, P15545, DOI 10.1073/pnas.0506580102
  72. Suter DM, 2011, SCIENCE, V332, P472, DOI 10.1126/science.1198817
  73. Thattai M, 2001, P NATL ACAD SCI USA, V98, P8614, DOI 10.1073/pnas.151588598
  74. Tripathi T, 2008, PHYS REV E, V77, DOI 10.1103/PhysRevE.77.011921
  75. Tsimring LS, 2014, REP PROG PHYS, V77, DOI 10.1088/0034-4885/77/2/026601
  76. Xu H, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.128101
  77. Yvinec R., PREPRINT