Epilepsy under the scope of ultra-high field MRI

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACADEMIC PRESS INC ELSEVIER SCIENCE
Citação
EPILEPSY & BEHAVIOR, v.121, article ID 106366, 7p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Ultra-high field magnetic resonance imaging (UHF-MRI) is capable of unraveling anatomical structures in a sub millimeter range. In addition, its high resonance regime allows the quantification of constitutive molecules in a spatially sensitive manner, a crucial capability for determining the extent and localization of a probable epileptogenic region or the severity of the epilepsy. The main technical challenges for data acquisition under UHF are to produce a strong, homogeneous transverse field, while keeping the tissue power deposition within the safe regulatory guidelines. The nonuniformities caused by destructive and constructive interferences at UHFs required new technologies to accelerate and increase yield regarding time spent and quality achieved. Image quality is the paramount contribution of UHF high-resolution imaging, which is capable to disclose fine details of the hippocampal formation and its surroundings and their changes in the course of epilepsy. Other sequences like diffusion tensor imaging (DTI) and multiecho susceptibility imaging at 7 Tin vivo can assist the creation of normative atlases of the hippocampal subfields or the reconstruction of the highly arborized cerebral blood vessels. In our review, we specify the impact of these advanced relevant techniques onto the study of epilepsy. In this context, we focused onto high field high-resolution scanners and clinically-enriched decision-making. Studies on focal dysplasias correlating ex vivo high-resolution imaging with specific histological and ultrastructural patterns showed that white matter hyperintensities were related to a demyelination process and other alterations. Preliminary results correlating thick serial sections through bioptic epileptogenic tissue could extend the strategy to localize degenerated tissue sectors, correlate nature and extent of tissue loss with preoperative diagnosis and postoperative outcome. Finally, this protocol will provide the neurosurgeon with a detailed depiction of the removed pathologic tissue and possible adverse effects by the pathologic tissue left in situ. . This article is part of the special issue ""NEWroscience 2018"" (c) 2019 Elsevier Inc. All rights reserved.
Palavras-chave
Epilepsy, MRI, Ultra-high field, 7 Tesla, Histological correlation
Referências
  1. Abreu R, 2018, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00029
  2. Allen PJ, 2000, NEUROIMAGE, V12, P230, DOI 10.1006/nimg.2000.0599
  3. [Anonymous], other] Ultra-high field MRI scanners
  4. Balchandani P, 2015, AM J NEURORADIOL, V36, P1204, DOI 10.3174/ajnr.A4180
  5. Brem F, 2005, BIOMETALS, V18, P191, DOI 10.1007/s10534-004-6253-y
  6. Breyer T, 2010, ACAD RADIOL, V17, P421, DOI 10.1016/j.acra.2009.10.013
  7. Cardoso PL, 2017, HUM BRAIN MAPP, V38, P3163, DOI 10.1002/hbm.23582
  8. Cembrowski MS, 2019, NAT REV NEUROSCI, V20, P193, DOI 10.1038/s41583-019-0125-5
  9. Colon AJ, 2018, SEIZURE-EUR J EPILEP, V60, P29, DOI 10.1016/j.seizure.2018.05.019
  10. Colon AJ, 2016, ACTA NEUROL BELG, V116, P259, DOI 10.1007/s13760-016-0662-x
  11. Coras R, 2014, EPILEPSIA, V55, P2003, DOI 10.1111/epi.12828
  12. De Ciantis A, 2015, AM J NEURORADIOL, V36, P309, DOI 10.3174/ajnr.A4116
  13. De Ciantis A, 2016, EPILEPSIA, V57, P445, DOI 10.1111/epi.13313
  14. DeKraker J, 2018, NEUROIMAGE, V167, P408, DOI 10.1016/j.neuroimage.2017.11.054
  15. Dumoulin SO, 2018, NEUROIMAGE, V168, P345, DOI 10.1016/j.neuroimage.2017.01.028
  16. Engel J, 2013, EPILEPSIA, V54, P61, DOI 10.1111/epi.12299
  17. Feldman RE, 2018, SEIZURE-EUR J EPILEP, V54, P11, DOI 10.1016/j.seizure.2017.11.004
  18. Fiederer LDJ, 2016, NEUROIMAGE, V128, P193, DOI 10.1016/j.neuroimage.2015.12.041
  19. Garbelli R, 2011, NEUROLOGY, V76, P1177, DOI 10.1212/WNL.0b013e318212aae1
  20. Garbelli R, 2012, BRAIN, V135, P2337, DOI 10.1093/brain/aws149
  21. GERTZ SD, 1972, JOHNS HOPKINS MED J, V130, P367
  22. Gillmann C, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196008
  23. Goubran M, 2014, HUM BRAIN MAPP, V35, P3588, DOI 10.1002/hbm.22423
  24. Grinberg LT, 2009, J NEUROL SCI, V283, P2, DOI 10.1016/j.jns.2009.02.327
  25. Grouiller F, 2016, MAGN RESON MATER PHY, V29, P605, DOI 10.1007/s10334-016-0536-5
  26. HECKERS S, 1990, J NEURAL TRANSM-GEN, V80, P151, DOI 10.1007/BF01257080
  27. HEINSEN H, 1994, ANAT EMBRYOL, V190, P181
  28. Ipek O, 2017, ANAL BIOCHEM, V529, P10, DOI 10.1016/j.ab.2017.03.022
  29. Jardim AP, 2018, BRAIN PATHOL, V28, P143, DOI 10.1111/bpa.12514
  30. Kandratavicius L, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/960126
  31. Kraff O, 2017, J MAGN RESON IMAGING, V46, P1573, DOI 10.1002/jmri.25723
  32. Kwan BYM, 2016, J NEUROL SCI, V369, P82, DOI 10.1016/j.jns.2016.07.066
  33. Le Roux LG, 2014, SEMIN ROENTGENOL, V49, P225, DOI 10.1053/j.ro.2013.12.001
  34. Alho EJL, 2018, BRAIN STRUCT FUNCT, V223, P1121, DOI 10.1007/s00429-017-1548-2
  35. Madan N, 2009, EPILEPSIA, V50, P9, DOI 10.1111/j.1528-1167.2009.02292.x
  36. Mantini D, 2007, NEUROIMAGE, V34, P598, DOI 10.1016/j.neuroimage.2006.09.037
  37. Martinian L, 2012, EPILEPSY RES, V98, P14, DOI 10.1016/j.eplepsyres.2011.08.011
  38. O'Halloran R, 2017, NEUROREPORT, V28, P457, DOI 10.1097/WNR.0000000000000788
  39. O'Sullivan Shane, 2019, Brain Inform, V6, P3, DOI 10.1186/s40708-019-0096-3
  40. Obusez EC, 2018, NEUROIMAGE, V168, P459, DOI 10.1016/j.neuroimage.2016.11.030
  41. Pan JW, 2013, MAGN RESON MED, V69, P310, DOI 10.1002/mrm.24283
  42. Pan JW, 2010, MAGN RESON MED, V64, P1237, DOI 10.1002/mrm.22534
  43. Pan JW, 2013, EPILEPSIA, V54, P1668, DOI 10.1111/epi.12322
  44. Paus T, 2018, NEUROIMAGE, V182, P3, DOI 10.1016/j.neuroimage.2017.10.013
  45. Petroff OAC, 2002, NEUROSCIENTIST, V8, P562, DOI 10.1177/1073858402238515
  46. Purdon PL, 2008, J NEUROSCI METH, V175, P165, DOI 10.1016/j.jneumeth.2008.07.017
  47. Rutland JW, 2018, SEIZURE-EUR J EPILEP, V62, P3, DOI 10.1016/j.seizure.2018.09.005
  48. Springer E, 2016, INVEST RADIOL, V51, P469, DOI 10.1097/RLI.0000000000000256
  49. Stefanits H, 2017, INVEST RADIOL, V52, P666, DOI 10.1097/RLI.0000000000000388
  50. Teipel SJ, 2008, EUR J NUCL MED MOL I, V35, pS58, DOI 10.1007/s00259-007-0703-z
  51. Theysohn JM, 2009, HIPPOCAMPUS, V19, P1, DOI 10.1002/hipo.20487
  52. Trattnig S, 2018, NEUROIMAGE, V168, P477, DOI 10.1016/j.neuroimage.2016.11.031
  53. Ugurbil K, 2018, NEUROIMAGE, V168, P7, DOI 10.1016/j.neuroimage.2017.07.007
  54. van Veenendaal TM, 2018, NEUROIMAGE-CLIN, V19, P47, DOI 10.1016/j.nicl.2018.04.006
  55. van Vliet EA, 2017, EPILEPSIA, V58, P315, DOI 10.1111/epi.13621
  56. Vaughan TT, 2009, MAGN RESON MED, V61, P244, DOI 10.1002/mrm.21751
  57. Veersema TJ, 2016, EPILEPTIC DISORD, V18, P315, DOI 10.1684/epd.2016.0838
  58. von Morze C, 2010, MAGN RESON IMAGING, V28, P1541, DOI 10.1016/j.mri.2010.06.025
  59. Wang K, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00059
  60. Wieshmann UC, 1999, J ANAT, V195, P131, DOI 10.1046/j.1469-7580.1999.19510131.x
  61. Witter MP, 2000, ANN NY ACAD SCI, V911, P1
  62. Wong C.G., 2003, ANN NEUROL, V54, P3, DOI [10.1002/ana.10696, DOI 10.1002/ana.10696]
  63. Yushkevich PA, 2009, NEUROIMAGE, V44, P385, DOI 10.1016/j.neuroimage.2008.08.042
  64. Zucca I, 2016, ANN NEUROL, V79, P42, DOI 10.1002/ana.24541