Exercise training reduces sympathetic nerve activity and improves executive performance in individuals with obstructive sleep apnea

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
HOSPITAL CLINICAS, UNIV SAO PAULO
Citação
CLINICS, v.76, article ID e2786, 10p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVE: To investigate the effects of exercise training (ET) on muscle sympathetic nerve activity (MSNA) and executive performance during Stroop Color Word Test (SCWT) also referred to as mental stress test. METHODS: Forty-four individuals with obstructive sleep apnea (OSA) and no significant co-morbidities were randomized into 2 groups; 15 individuals completed the control period, and 18 individuals completed the ET. Mini-mental state of examination and intelligence quotient were also assessed. MSNA assessed by microneurography, heart rate by electrocardiography, blood pressure (automated oscillometric device) were measured at baseline and during 3 min of the SCWT. Peak oxygen uptake (VO2 peak) was evaluated using cardiopulmonary exercise testing. Executive performance was assessed by the total correct responses during 3 min of the SCWT. ET consisted of 3 weekly sessions of aerobic exercise, resistance exercises, and flexibility (72 sessions, achieved in 40 +/- 3.9 weeks). RESULTS: Baseline parameters were similar between groups. Heart rate, blood pressure, and MSNA responses during SCWT were similar between groups (p>0.05). The comparisons between groups showed that the changes in VO2 (4.7 +/- 0.8 vs -1.2 +/- 0.4) and apnea-hypopnea index (-7.4 +/- 3.1 vs 5.5 +/- 3.3) in the exercise-trained group were significantly greater than those observed in the control group respectively (p<0.05) after intervention. ET reduced MSNA responses (p<0.05) and significantly increased the number of correct answers (12.4%) during SCWT. The number of correct answers was unchanged in the control group (p>0.05). CONCLUSIONS: ET improves sympathetic response and executive performance during SCWT, suggesting a prominent positive impact of ET on prefrontal functioning in individuals with OSA. ClinicalTrials.gov: NCT002289625.
Palavras-chave
Exercise Training, Sympathetic Nervous System, Executive Function, Obstructive Sleep Apnea
Referências
  1. Araujo CEL, 2021, BRAZ J MED BIOL RES, V54, DOI [10.1590/1414-431X202010543, 10.1590/1414-431x202010543]
  2. Beebe DW, 2003, SLEEP, V26, P298, DOI 10.1093/sleep/26.3.298
  3. Berry RB, 2012, J CLIN SLEEP MED, V8, P597, DOI 10.5664/jcsm.2172
  4. Canessa N, 2018, NEUROIMAGE-CLIN, V19, P56, DOI 10.1016/j.nicl.2018.03.036
  5. Canessa N, 2011, AM J RESP CRIT CARE, V183, P1419, DOI 10.1164/rccm.201005-0693OC
  6. Colcombe SJ, 2004, P NATL ACAD SCI USA, V101, P3316, DOI 10.1073/pnas.0400266101
  7. Dampney RAL, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00461
  8. Dewan NA, 2015, CHEST, V147, P266, DOI 10.1378/chest.14-0500
  9. Drager LF, 2017, CIRCULATION, V136, P1840, DOI 10.1161/CIRCULATIONAHA.117.029400
  10. Esler M, 2008, CLIN EXP PHARMACOL P, V35, P498, DOI 10.1111/j.1440-1681.2008.04904.x
  11. Fatouleh RH, 2014, NEUROIMAGE-CLIN, V6, P275, DOI 10.1016/j.nicl.2014.08.021
  12. Giles GE, 2014, NEUROREPORT, V25, P1320, DOI 10.1097/WNR.0000000000000266
  13. Golbin Jason M, 2008, Proc Am Thorac Soc, V5, P200, DOI 10.1513/pats.200708-143MG
  14. Goya TT, 2016, SLEEP, V39, P25, DOI 10.5665/sleep.5310
  15. Guerra RS, 2019, MED SCI SPORT EXER, V51, P426, DOI 10.1249/MSS.0000000000001805
  16. Laterza MC, 2007, HYPERTENSION, V49, P1298, DOI 10.1161/HYPERTENSIONAHA.106.085548
  17. Lefferts WK, 2018, J APPL PHYSIOL, V125, P1906, DOI 10.1152/japplphysiol.00100.2018
  18. Lucas SJE, 2012, EXP GERONTOL, V47, P541, DOI 10.1016/j.exger.2011.12.002
  19. MacLeod CM, 2000, TRENDS COGN SCI, V4, P383, DOI 10.1016/S1364-6613(00)01530-8
  20. MADSEN PL, 1995, J CEREBR BLOOD F MET, V15, P485, DOI 10.1038/jcbfm.1995.60
  21. Maki-Nunes C, 2015, OBESITY, V23, P1582, DOI 10.1002/oby.21126
  22. Martinez DG, 2011, HYPERTENSION, V58, P1049, DOI 10.1161/HYPERTENSIONAHA.111.176644
  23. Mitchell DA, 2009, J PHYSIOL-LONDON, V587, P2589, DOI 10.1113/jphysiol.2008.167999
  24. Patel KP, 2013, AM J PHYSIOL-HEART C, V305, pH173, DOI 10.1152/ajpheart.00009.2013
  25. Punjabi NM, 2009, PLOS MED, V6, DOI 10.1371/journal.pmed.1000132
  26. Seifert T, 2011, PROG NEUROBIOL, V95, P406, DOI 10.1016/j.pneurobio.2011.09.008
  27. SOMERS VK, 1995, J CLIN INVEST, V96, P1897, DOI 10.1172/JCI118235
  28. Taylor KS, 2018, SLEEP, V41, DOI 10.1093/sleep/zsx208
  29. Toschi-Dias E, 2019, SLEEP BREATH, V23, P143, DOI 10.1007/s11325-018-1675-x
  30. Ueno LM, 2009, SLEEP, V32, P637, DOI 10.1093/sleep/32.5.637
  31. Ueno-Pardi LM, 2017, MED SCI SPORT EXER, V49, P1424, DOI 10.1249/MSS.0000000000001242
  32. Van Offenwert E, 2019, ACTA CLIN BELG, V74, P92, DOI 10.1080/17843286.2018.1467587
  33. Winklewski PJ, 2013, BLOOD PRESSURE, V22, P27, DOI 10.3109/08037051.2012.701407
  34. Yan L, 2021, J CEREBR BLOOD F MET, V28, DOI [10.1177/0271678X211012109, DOI 10.1177/0271678X211012109]
  35. Zheng H, 2012, AM J PHYSIOL-REG I, V303, pR387, DOI 10.1152/ajpregu.00046.2012