Loss of forest cover and host functional diversity increases prevalence of avian malaria parasites in the Atlantic Forest

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
FECCHIO, Alan
LIMA, Marcos R.
BELL, Jeffrey A.
SCHUNCK, Fabio
CORREA, Aline H.
BECO, Renata
JAHN, Alex E.
FONTANA, Carla S.
SILVA, Thaiane W. da
REPENNING, Marcio
Citação
INTERNATIONAL JOURNAL FOR PARASITOLOGY, v.51, n.9, p.719-728, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt hostparasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.
Palavras-chave
Anthropogenic change, Community assembly, Deforestation, Disease ecology, Functional diversity, Parasite diversity, Phylogenetic diversity, Vector borne disease
Referências
  1. Bell JA, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0993-0
  2. Bensch S, 2004, EVOLUTION, V58, P1617, DOI 10.1111/j.0014-3820.2004.tb01742.x
  3. Bensch S, 2009, MOL ECOL RESOUR, V9, P1353, DOI 10.1111/j.1755-0998.2009.02692.x
  4. Bivand RS, 2018, TEST-SPAIN, V27, P716, DOI 10.1007/s11749-018-0599-x
  5. Borner J, 2016, MOL PHYLOGENET EVOL, V94, P221, DOI 10.1016/j.ympev.2015.09.003
  6. Burnham KP, 2011, BEHAV ECOL SOCIOBIOL, V65, P23, DOI 10.1007/s00265-010-1029-6
  7. Cable J, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0088
  8. Ciloglu A, 2020, MOL PHYLOGENET EVOL, V153, DOI 10.1016/j.ympev.2020.106947
  9. Clark NJ, 2018, DIVERS DISTRIB, V24, P13, DOI 10.1111/ddi.12661
  10. Clark NJ, 2014, INT J PARASITOL, V44, P329, DOI 10.1016/j.ijpara.2014.01.004
  11. Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109
  12. Davies TJ, 2008, P ROY SOC B-BIOL SCI, V275, P1695, DOI 10.1098/rspb.2008.0284
  13. Solar RRD, 2015, ECOL LETT, V18, P1108, DOI 10.1111/ele.12494
  14. Dray S, 2007, J STAT SOFTW, V22, P1, DOI 10.18637/jss.v022.i04
  15. Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088
  16. Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075
  17. Ellisa VA, 2015, P NATL ACAD SCI USA, V112, P11294, DOI 10.1073/pnas.1515309112
  18. Ezenwa VO, 2006, OIKOS, V115, P526, DOI 10.1111/j.2006.0030-1299.15186.x
  19. Fallon SM, 2003, J PARASITOL, V89, P1044, DOI 10.1645/GE-3157
  20. Fecchio A, 2019, MOL ECOL, V28, P2681, DOI 10.1111/mec.15094
  21. Fecchio A, 2018, OIKOS, V127, P1233, DOI 10.1111/oik.05115
  22. Felsenstein J., 2004, INFERRING PHYLOGENIE
  23. Ferraguti M, 2018, J ANIM ECOL, V87, P727, DOI 10.1111/1365-2656.12805
  24. Ferrari SLP, 2004, J APPL STAT, V31, P799, DOI 10.1080/0266476042000214501
  25. Galen SC, 2018, ROY SOC OPEN SCI, V5, DOI 10.1098/rsos.171780
  26. Garamszegi LZ, 2011, GLOBAL CHANGE BIOL, V17, P1751, DOI 10.1111/j.1365-2486.2010.02346.x
  27. GRAFEN A, 1989, PHILOS T R SOC B, V326, P119, DOI 10.1098/rstb.1989.0106
  28. Guindon S, 2003, SYST BIOL, V52, P696, DOI 10.1080/10635150390235520
  29. Gupta P, 2019, P ROY SOC B-BIOL SCI, V286, DOI 10.1098/rspb.2019.0439
  30. Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI 10.1021/bk-1999-0734.ch008
  31. Hansbauer MM, 2008, J TROP ECOL, V24, P291, DOI 10.1017/S0266467408005002
  32. Harl J, 2020, MALARIA J, V19, DOI 10.1186/s12936-020-03408-0
  33. Hellgren O, 2004, J PARASITOL, V90, P797, DOI 10.1645/GE-184R1
  34. Huang S, 2014, J ANIM ECOL, V83, P671, DOI 10.1111/1365-2656.12160
  35. Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631
  36. Kamiya T, 2014, ECOGRAPHY, V37, P689, DOI 10.1111/j.1600-0587.2013.00571.x
  37. Keesing F, 2010, NATURE, V468, P647, DOI 10.1038/nature09575
  38. Kembel SW, 2010, BIOINFORMATICS, V26, P1463, DOI 10.1093/bioinformatics/btq166
  39. Lacorte GA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057770
  40. Lafferty KD, 2009, ECOLOGY, V90, P888, DOI 10.1890/08-0079.1
  41. LaPointe DA, 2010, J PARASITOL, V96, P318, DOI 10.1645/GE-2290.1
  42. Magurran A., 2004, MEASURING BIOL DIVER
  43. Marini MA, 2010, STUD NEOTROP FAUNA E, V45, P1, DOI 10.1080/01650521003656606
  44. Matuoka MA, 2020, BIOTROPICA, V52, P738, DOI 10.1111/btp.12795
  45. Medeiros-Sousa AR, 2019, MALARIA J, V18, DOI 10.1186/s12936-019-2744-8
  46. Medeiros-Sousa AR, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-18208-x
  47. Miller ET, 2017, ECOGRAPHY, V40, P461, DOI 10.1111/ecog.02070
  48. Mittermeier RA, 2005, CONSERV BIOL, V19, P601, DOI 10.1111/j.1523-1739.2005.00709.x
  49. Morante JC, 2018, J APPL ECOL, V55, P256, DOI 10.1111/1365-2664.12962
  50. Mordecai EA, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005568
  51. Mordecai EA, 2013, ECOL LETT, V16, P22, DOI 10.1111/ele.12015
  52. Chaves LSM, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-25344-5
  53. Nunn CL, 2004, AM NAT, V164, pS90, DOI 10.1086/424608
  54. Oliveira-Christe R., 2020, ACTA TROP, V202, DOI [10.1016/j.actatropica.2019.105264, DOI 10.1016/j.actatropica.2019.105264]
  55. Olson SH, 2010, EMERG INFECT DIS, V16, P1108, DOI 10.3201/eid1607.091785
  56. Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412
  57. Patz JA, 2000, INT J PARASITOL, V30, P1395, DOI 10.1016/S0020-7519(00)00141-7
  58. Patz JA, 2008, MED CLIN N AM, V92, P1473, DOI 10.1016/j.mcna.2008.07.007
  59. Pavoine S, 2009, OIKOS, V118, P391, DOI 10.1111/j.1600-0706.2008.16668.x
  60. Perez-Rodriguez A, 2018, ECOGRAPHY, V41, P1835, DOI 10.1111/ecog.03189
  61. R Core Team, 2020, R LANG ENV STAT COMP
  62. Ricklefs RE, 2004, SYST BIOL, V53, P111, DOI 10.1080/10635150490264987
  63. Ricklefs RE, 2010, SCIENCE, V329, P226, DOI 10.1126/science.1188954
  64. Santiago-Alarcon D, 2012, BIOL REV, V87, P928, DOI 10.1111/j.1469-185X.2012.00234.x
  65. Sehgal RNM, 2011, P ROY SOC B-BIOL SCI, V278, P1025, DOI 10.1098/rspb.2010.1720
  66. Sehgal RNM, 2015, INT J PARASITOL-PAR, V4, P421, DOI 10.1016/j.ijppaw.2015.09.001
  67. Svensson-Coelho M, 2013, ORNITHOLOGICAL MONOG, V76, P1, DOI 10.1525/0M.2013.76.1.1
  68. Tabarelli M, 2010, BIOL CONSERV, V143, P2328, DOI 10.1016/j.biocon.2010.02.005
  69. Tucker CM, 2017, BIOL REV, V92, P698, DOI 10.1111/brv.12252
  70. Valki ~unas G., 2005, AVIAN MALARIA PARASI
  71. Verdonschot PFM, 2014, LIMNOLOGICA, V45, P69, DOI 10.1016/j.limno.2013.11.002
  72. Vitone ND, 2004, EVOL ECOL RES, V6, P183
  73. Vittor AY, 2009, AM J TROP MED HYG, V81, P5
  74. Vittor AY, 2006, AM J TROP MED HYG, V74, P3, DOI 10.4269/ajtmh.2006.74.3
  75. Webb CO, 2000, AM NAT, V156, P145, DOI 10.1086/303378
  76. Wells K, 2019, TRENDS PARASITOL, V35, P452, DOI 10.1016/j.pt.2019.04.001
  77. Wilman H., 2014, ECOL ARCH, pE095, DOI [10.1890/13-1917.1, DOI 10.1890/13-1917.1]
  78. Zuur AF, 2009, STAT BIOL HEALTH, P580