Extracellular Matrix Proteome Remodeling in Human Glioblastoma and Medulloblastoma

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER CHEMICAL SOC
Citação
JOURNAL OF PROTEOME RESEARCH, v.20, n.10, p.4693-4707, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Medulloblastomas (MBs) and glioblastomas (GBMs) are high-incidence central nervous system tumors. Different origin sites and changes in the tissue microenvironment have been associated with the onset and progression. Here, we describe differences between the extracellular matrix (ECM) signatures of these tumors. We compared the proteomic profiles of MB and GBM decellularized tumor samples between each other and their normal decellularized brain site counterparts. Our analysis revealed that 19, 28, and 11 ECM proteins were differentially expressed in MBs, GBMs, and in both MBs and GBMs, respectively. Next, we validated key findings by using a protein tissue array with 53 MB and 55 GBM cases and evaluated the clinical relevance of the identified differentially expressed proteins through their analysis on publicly available datasets, 763 MB samples from the GSE50161 and GSE85217 studies, and 115 GBM samples from RNAseq-TCGA. We report a shift toward a denser fibrillary ECM as well as a clear alteration in the glycoprotein signature, which influences the tumor pathophysiology.
Palavras-chave
extracellular matrix, decellularization, glioblastoma, medulloblastoma, proteome, mass spectrometry
Referências
  1. Abramczyk H, 2018, SPECTROCHIM ACTA A, V188, P8, DOI 10.1016/j.saa.2017.06.037
  2. Anceriz N, 2007, BIOCHEM BIOPH RES CO, V354, P84, DOI 10.1016/j.bbrc.2006.12.203
  3. Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556
  4. Burgos-Panadero R, 2019, BMC CANCER, V19, DOI 10.1186/s12885-019-5693-2
  5. Cavalli FMG, 2017, CANCER CELL, V31, P737, DOI 10.1016/j.ccell.2017.05.005
  6. Chen L, 2018, MOL THER-METH CLIN D, V10, P57, DOI 10.1016/j.omtm.2018.06.007
  7. Chiquet-Ehrismann R, 2011, CSH PERSPECT BIOL, V3, DOI 10.1101/cshperspect.a004960
  8. Colombatti A, 2000, MATRIX BIOL, V19, P289, DOI 10.1016/S0945-053X(00)00074-3
  9. Daniels MP, 2012, NEUROCHEM INT, V61, P848, DOI 10.1016/j.neuint.2012.02.028
  10. Didiasova M, 2014, INT J MOL SCI, V15, P21229, DOI 10.3390/ijms151121229
  11. Dong YY, 2019, J HEMATOL ONCOL, V12, DOI 10.1186/s13045-019-0795-5
  12. Du J, 2016, SCI REP-UK, V6, DOI 10.1038/srep20395
  13. Egeblad M, 2010, CURR OPIN CELL BIOL, V22, P697, DOI 10.1016/j.ceb.2010.08.015
  14. El Ayachi I, 2010, NEUROPATH APPL NEURO, V36, P399, DOI 10.1111/j.1365-2990.2010.01074.x
  15. Galatro TF, 2017, NAT NEUROSCI, V20, P1162, DOI 10.1038/nn.4597
  16. Garzia L, 2018, CELL, V172, P1050, DOI 10.1016/j.cell.2018.01.038
  17. Gobom J, 1999, J MASS SPECTROM, V34, P105, DOI 10.1002/(SICI)1096-9888(199902)34:2<105::AID-JMS768>3.3.CO;2-W
  18. Goddard ET, 2016, INT J BIOCHEM CELL B, V81, P223, DOI 10.1016/j.biocel.2016.10.014
  19. Griesinger AM, 2013, J IMMUNOL, V191, P4880, DOI 10.4049/jimmunol.1301966
  20. Guo SK, 2018, CELL PHYSIOL BIOCHEM, V49, P1138, DOI 10.1159/000493293
  21. Gupta SK, 2013, ONCOGENE, V32, P141, DOI 10.1038/onc.2012.41
  22. Hacker U, 2005, NAT REV MOL CELL BIO, V6, P530, DOI 10.1038/nrm1681
  23. Haeberle H, 2012, NEOPLASIA, V14, P666, DOI 10.1593/neo.12634
  24. He HM, 2019, MICROSC MICROANAL, V25, P950, DOI 10.1017/S1431927619000679
  25. Iozzo RV, 2011, J CELL MOL MED, V15, P1013, DOI 10.1111/j.1582-4934.2010.01236.x
  26. Jaiswal JK, 2015, CELL CYCLE, V14, P502, DOI 10.1080/15384101.2014.995495
  27. JEREMIC B, 1994, J NEURO-ONCOL, V21, P177, DOI 10.1007/BF01052902
  28. Jung S, 1998, J NEUROPATH EXP NEUR, V57, P439, DOI 10.1097/00005072-199805000-00007
  29. Kii I, 2010, J BIOL CHEM, V285, P2028, DOI 10.1074/jbc.M109.051961
  30. Kool M, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003088
  31. Kular JK, 2014, J TISSUE ENG, V5, DOI 10.1177/2041731414557112
  32. LAHAV J, 1984, EUR J BIOCHEM, V145, P151, DOI 10.1111/j.1432-1033.1984.tb08534.x
  33. Lam D, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-40128-1
  34. Lei YM, 2017, PROG NEUROBIOL, V157, P230, DOI 10.1016/j.pneurobio.2015.12.007
  35. Li R, 2014, J VASC RES, V51, P110, DOI 10.1159/000360085
  36. Li YF, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-36551-5
  37. Liao YX, 2018, CELL PHYSIOL BIOCHEM, V48, P1382, DOI 10.1159/000492096
  38. Liu S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-08862-6
  39. Lord MS, 2020, J HISTOCHEM CYTOCHEM, V68, P907, DOI 10.1369/0022155420940067
  40. LYONS RM, 1990, J CELL BIOL, V110, P1361, DOI 10.1083/jcb.110.4.1361
  41. Mellgren Ronald L, 2011, Commun Integr Biol, V4, P198, DOI 10.4161/cib.4.2.14384
  42. Miroshnikova YA, 2016, NAT CELL BIOL, V18, P1336, DOI 10.1038/ncb3429
  43. Murphy MC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081668
  44. Naba A, 2017, SCI REP-UK, V7, DOI 10.1038/srep40495
  45. Naba A, 2016, MATRIX BIOL, V49, P10, DOI 10.1016/j.matbio.2015.06.003
  46. Naba A, 2012, MOL CELL PROTEOMICS, V11, DOI 10.1074/mcp.M111.014647
  47. Ohgaki H, 2005, ACTA NEUROPATHOL, V109, P93, DOI 10.1007/s00401-005-0991-y
  48. Pan YB, 2018, J NEURO-ONCOL, V137, P395, DOI 10.1007/s11060-017-2729-9
  49. Park JJ, 2020, ANTICANCER RES, V40, P2627, DOI 10.21873/anticanres.14233
  50. Parsons DW, 2011, SCIENCE, V331, P435, DOI 10.1126/science.1198056
  51. Ragelle H, 2017, BIOMATERIALS, V128, P147, DOI 10.1016/j.biomaterials.2017.03.008
  52. Ranson M, 2003, FRONT BIOSCI, V8, pS294, DOI 10.2741/1044
  53. Rosa-Fernandes L, 2019, FRONT CELL NEUROSCI, V13, DOI 10.3389/fncel.2019.00064
  54. Santibanez JF, 2018, DEV DYNAM, V247, P382, DOI 10.1002/dvdy.24554
  55. Schiavinato A, 2012, J BIOL CHEM, V287, P11498, DOI 10.1074/jbc.M111.303578
  56. Schneider SW, 2004, ACTA NEUROPATHOL, V107, P272, DOI 10.1007/s00401-003-0810-2
  57. Serres E, 2014, ONCOGENE, V33, P3451, DOI 10.1038/onc.2013.305
  58. Shao XH, 2020, NUCLEIC ACIDS RES, V48, pD1136, DOI 10.1093/nar/gkz849
  59. Shen M, 2019, CANCER CELL, V35, P64, DOI 10.1016/j.ccell.2018.11.016
  60. Shimodaira M, 2010, AM J HYPERTENS, V23, P547, DOI 10.1038/ajh.2010.16
  61. Sorushanova A, 2019, ADV MATER, V31, DOI 10.1002/adma.201801651
  62. Srikrishna G, 2012, J INNATE IMMUN, V4, P31, DOI 10.1159/000330095
  63. Tang ZF, 2019, NUCLEIC ACIDS RES, V47, pW556, DOI 10.1093/nar/gkz430
  64. Tomko LA, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-31126-w
  65. van Loon K, 2020, BBA-REV CANCER, V1873, DOI 10.1016/j.bbcan.2020.188354
  66. Wagner JUG, 2018, ARTERIOSCL THROM VAS, V38, P1170, DOI 10.1161/ATVBAHA.117.310685
  67. Wang RQ, 2019, THER ADV ENDOCRINOL, V10, DOI 10.1177/2042018818821296
  68. Wang XF, 2017, INT J CANCER, V141, P998, DOI 10.1002/ijc.30801
  69. Wullkopf L, 2018, MOL BIOL CELL, V29, P2378, DOI 10.1091/mbc.E18-05-0319
  70. Yang CT, 2018, CELL DEATH DIS, V9, DOI 10.1038/s41419-017-0212-3
  71. Yu Q, 2018, FRONT MOL NEUROSCI, V11, DOI 10.3389/fnmol.2018.00130