Sleep-related traits and attention-deficit/hyperactivity disorder comorbidity: Shared genetic risk factors, molecular mechanisms, and causal effects

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS LTD
Autores
CARPENA, Marina Xavier
MARTINS-SILVA, Thais
GENRO, Julia P.
HUTZ, Mara Helena
ROHDE, Luis Augusto
TOVO-RODRIGUES, Luciana
Citação
WORLD JOURNAL OF BIOLOGICAL PSYCHIATRY, v.22, n.10, p.778-791, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives To evaluate the shared genetic components, common pathways and causal relationship between ADHD and sleep-related phenotypes Methods We used the largest genome-wide association summary statistics available for attention-deficit/hyperactivity disorder (ADHD) and various sleep-related phenotypes (insomnia, napping, daytime dozing, snoring, ease getting up, daytime sleepiness, sleep duration and chronotype). We estimated the genomic correlation using cross-trait linkage disequilibrium score regression (LDSR) and investigated the potential common mechanisms using gene-based cross-trait metanalyses and functional enrichment analyses. The causal effect was estimated using two-sample Mendelian randomisation (TSMR), using the inverse variance weighted method as the main estimator. Results A positive genomic correlation between insomnia, daytime napping, daytime dozing, snoring, daytime sleepiness, short and long sleep duration, and ADHD was observed. Insomnia, daytime sleepiness, and snoring shared genes with ADHD, that are involved in neurobiological functions and regulatory signalling pathways. The TSMR supported a causal effect of insomnia, daytime napping, and short sleep duration on ADHD, and of ADHD on long sleep duration and chronotype. Conclusion Comorbidity between sleep phenotypes and ADHD may be mediated by common genetic factors that play an important role in neuronal signalling pathways. A causal effect of sleep disturbances and short sleep duration on ADHD reinforced their role as predictors of ADHD.
Palavras-chave
ADHD, genetics, sleep, circadian rhythm, Mendelian randomisation
Referências
  1. Armstrong JM, 2014, SLEEP, V37, P901, DOI 10.5665/sleep.3656
  2. Arnold M, 2015, BIOINFORMATICS, V31, P1334, DOI 10.1093/bioinformatics/btu779
  3. Baird AL, 2012, MOL PSYCHIATR, V17, P988, DOI 10.1038/mp.2011.149
  4. Baird AL, 2013, BRAIN RES, V1513, P61, DOI 10.1016/j.brainres.2013.03.038
  5. Banaschewski T, 2017, DTSCH ARZTEBL INT, V114, P149, DOI 10.3238/arztebl.2017.0149
  6. Benedict C, 2014, SLEEP, V37, P195, DOI 10.5665/sleep.3336
  7. Benjamini Y, 1997, SCAND J STAT, V24, P407, DOI 10.1111/1467-9469.00072
  8. BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x
  9. Bijlenga D, 2019, ADHD-ATTEND DEFICIT, V11, P5, DOI 10.1007/s12402-018-0271-z
  10. Bonvicini C, 2018, WORLD J BIOL PSYCHIA, V19, P80, DOI 10.1080/15622975.2017.1282175
  11. Bowden J, 2015, INT J EPIDEMIOL, V44, P512, DOI 10.1093/ije/dyv080
  12. Brookes K, 2006, MOL PSYCHIATR, V11, P934, DOI 10.1038/sj.mp.4001869
  13. Burgess S, 2013, GENET EPIDEMIOL, V37, P658, DOI 10.1002/gepi.21758
  14. Bush G, 2005, BIOL PSYCHIAT, V57, P1273, DOI 10.1016/j.biopsych.2005.01.034
  15. Carpena MX, 2020, J ATTEN DISORD, V24, P590, DOI 10.1177/1087054719879500
  16. Carpena MX, 2019, GENES-BASEL, V10, DOI 10.3390/genes10020088
  17. Cedernaes J, 2015, J CLIN ENDOCR METAB, V100, pE1255, DOI [10.1210/jc.2015-2284, 10.1210/JC.2015-2284]
  18. Chen QF, 2015, ACTA PSYCHOL, V157, P176, DOI 10.1016/j.actpsy.2015.02.017
  19. Cirelli C, 2004, NEURON, V41, P35, DOI 10.1016/S0896-6273(03)00814-6
  20. Cirelli C, 2000, BRAIN RES, V885, P303, DOI 10.1016/S0006-8993(00)03008-0
  21. Consortium 1000 Genomes Project, 2015, GLOBAL REFERENCE HUM
  22. Coogan AN, 2017, ADHD-ATTEND DEFICIT, V9, P129, DOI 10.1007/s12402-016-0214-5
  23. Cortese S, 2009, J AM ACAD CHILD PSY, V48, P894, DOI 10.1097/CHI.0b013e3181ac09c9
  24. Cuellar-Partida G., BIORXIV PREPRINT, DOI [10.1101/518027, DOI 10.1101/518027]
  25. Dashti HS, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08917-4
  26. Davies NM, 2018, BMJ-BRIT MED J, V362, DOI 10.1136/bmj.k601
  27. de Leeuw CA, 2015, PLOS COMPUT BIOL, V11, DOI 10.1371/journal.pcbi.1004219
  28. dela Pena IJI, 2017, GENES BRAIN BEHAV, V16, P664, DOI 10.1111/gbb.12388
  29. Demontis D, 2019, NAT GENET, V51, P63, DOI 10.1038/s41588-018-0269-7
  30. Diaz-Roman A, 2018, NEUROSCI BIOBEHAV R, V89, P61, DOI 10.1016/j.neubiorev.2018.02.014
  31. Diaz-Roman A, 2016, J CLIN SLEEP MED, V12, P747, DOI 10.5664/jcsm.5810
  32. Faraone SV, 2019, J CLIN PSYCHIAT, V80, DOI 10.4088/JCP.18r12210
  33. Feinberg I, 2013, AM J PHYSIOL-REG I, V304, pR296, DOI 10.1152/ajpregu.00422.2012
  34. Gau SSF, 2007, SLEEP, V30, P195, DOI 10.1093/sleep/30.2.195
  35. Gregory AM, 2017, J CLIN CHILD ADOLESC, V46, P284, DOI 10.1080/15374416.2016.1183499
  36. Gregory AM, 2002, J AM ACAD CHILD PSY, V41, DOI 10.1097/00004583-200208000-00015
  37. Hemani G, 2018, ELIFE, V7, DOI 10.7554/eLife.34408
  38. Henry A, 2019, INT J EPIDEMIOL, V48, P849, DOI 10.1093/ije/dyz071
  39. Hoogman M, 2020, BIOL PSYCHIAT, V87, pS87
  40. Hoogman M, 2019, BIOL PSYCHIAT, V85, pS6, DOI 10.1016/j.biopsych.2019.03.030
  41. Huang J, 2015, J NEUROSCI, V35, P2572, DOI 10.1523/JNEUROSCI.2551-14.2015
  42. Hvolby A, 2015, ADHD-ATTEND DEFICIT, V7, P1, DOI 10.1007/s12402-014-0151-0
  43. Jansen PR, 2019, NAT GENET, V51, P394, DOI 10.1038/s41588-018-0333-3
  44. Jeong SH, 2014, EUR ARCH PSY CLIN N, V264, P71, DOI 10.1007/s00406-013-0443-y
  45. Jones SE, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-018-08259-7
  46. Katzman M, 2014, CNS DRUGS, V28, P1005, DOI 10.1007/s40263-014-0175-1
  47. Kidwell KM, 2017, J PEDIATR PSYCHOL, V42, P1144, DOI 10.1093/jpepsy/jsx071
  48. Kidwell KM, 2015, PEDIATRICS, V136, P1144, DOI 10.1542/peds.2015-1708
  49. Kim DK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109145
  50. Kissling C, 2008, AM J MED GENET B, V147B, P333, DOI 10.1002/ajmg.b.30602
  51. Konrad K, 2010, HUM BRAIN MAPP, V31, P904, DOI 10.1002/hbm.21058
  52. Korman M, 2020, WORLD J BIOL PSYCHIA, V21, P156, DOI 10.1080/15622975.2018.1523565
  53. Lane JM, 2019, NAT GENET, V51, P387, DOI 10.1038/s41588-019-0361-7
  54. Lawlor DA, 2008, STAT MED, V27, P1133, DOI 10.1002/sim.3034
  55. Liberzon A, 2011, BIOINFORMATICS, V27, P1739, DOI 10.1093/bioinformatics/btr260
  56. Machiela MJ, 2015, BIOINFORMATICS, V31, P3555, DOI 10.1093/bioinformatics/btv402
  57. Marinelli M, 2016, SLEEP, V39, P1859, DOI 10.5665/sleep.6170
  58. Massart R, 2014, TRANSL PSYCHIAT, V4, DOI 10.1038/tp.2013.120
  59. Mehta TR, 2019, CURR DEV DISORD REP, V6, P228, DOI 10.1007/s40474-019-00178-6
  60. Middeldorp CM, 2019, EUR J EPIDEMIOL, V34, P279, DOI 10.1007/s10654-019-00502-9
  61. Mota NR, 2020, NEUROPSYCHOPHARMACOL, V45, P1188, DOI 10.1038/s41386-019-0592-4
  62. Noble GS, 2012, BEHAV SLEEP MED, V10, P41, DOI 10.1080/15402002.2012.636274
  63. O'Keeffe SM, 2012, NEUROSCIENCE, V201, P219, DOI 10.1016/j.neuroscience.2011.11.002
  64. Pagel JF, 2007, J CLIN SLEEP MED, V3, P19
  65. Peralta GP, 2018, J DEV BEHAV PEDIATR, V39, P192, DOI 10.1097/DBP.0000000000000539
  66. Pievsky MA, 2018, ARCH CLIN NEUROPSYCH, V33, P143, DOI 10.1093/arclin/acx055
  67. Polanczyk G, 2007, AM J PSYCHIAT, V164, P942, DOI 10.1176/appi.ajp.164.6.942
  68. Sadeh A, 2006, SLEEP MED REV, V10, P381, DOI 10.1016/j.smrv.2006.03.004
  69. Saletin JM, 2019, SLEEP, V42, DOI 10.1093/sleep/zsy251
  70. Samea F, 2019, NEUROSCI BIOBEHAV R, V100, P1, DOI 10.1016/j.neubiorev.2019.02.011
  71. Scott N, 2013, J SLEEP RES, V22, P121, DOI 10.1111/j.1365-2869.2012.01054.x
  72. Shaw P, 2012, BIOL PSYCHIAT, V72, P191, DOI 10.1016/j.biopsych.2012.01.031
  73. Shen C, 2020, BIOL PSYCHIAT, V88, P459, DOI 10.1016/j.biopsych.2020.03.010
  74. Shen C, 2020, AM J PSYCHIAT, V177, P844, DOI 10.1176/appi.ajp.2020.19020183
  75. Skuladottir GV, 2016, LIPIDS HEALTH DIS, V15, DOI 10.1186/s12944-016-0309-1
  76. Smith GD, 2003, INT J EPIDEMIOL, V32, P1, DOI 10.1093/ije/dyg070
  77. Steinsbekk S, 2015, J DEV BEHAV PEDIATR, V36, P243, DOI 10.1097/DBP.0000000000000134
  78. Stoffers D, 2014, BRAIN, V137, P610, DOI 10.1093/brain/awt329
  79. Sudlow C, 2015, PLOS MED, V12, DOI 10.1371/journal.pmed.1001779
  80. Sung V, 2008, ARCH PEDIAT ADOL MED, V162, P336, DOI 10.1001/archpedi.162.4.336
  81. Telzer EH, 2015, DEV COGN NEUROS-NETH, V14, P16, DOI 10.1016/j.dcn.2015.05.007
  82. Vila MT, 2010, AN PEDIATR, V73, P78, DOI 10.1016/j.anpedi.2010.05.013
  83. Tso W, 2019, PEDIATR RES, V85, P449, DOI 10.1038/s41390-019-0280-4
  84. Urn YH, 2017, CLIN PSYCHOPHARM NEU, V15, P9, DOI 10.9758/cpn.2017.15.1.9
  85. Ventskovska O, 2015, J SLEEP RES, V24, P124, DOI 10.1111/jsr.12242
  86. Wang HM, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-11456-7
  87. Wang L, 2009, HUM BRAIN MAPP, V30, P638, DOI 10.1002/hbm.20530
  88. Watanabe K, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01261-5
  89. Wei Y, 2019, NEUROIMAGE-CLIN, V24, DOI 10.1016/j.nicl.2019.102019
  90. Weiss MD, 2010, CNS DRUGS, V24, P811, DOI 10.2165/11538990-000000000-00000
  91. Williams KE, 2016, J DEV BEHAV PEDIATR, V37, P385, DOI 10.1097/DBP.0000000000000281
  92. Xu XH, 2010, BEHAV BRAIN FUNCT, V6, DOI 10.1186/1744-9081-6-48
  93. Yoon SYR, 2012, SLEEP MED REV, V16, P371, DOI 10.1016/j.smrv.2011.07.001
  94. Zheng Jie, 2017, Curr Epidemiol Rep, V4, P330, DOI 10.1007/s40471-017-0128-6
  95. Zheng J, 2016, BEHAV GENET, V46, P815
  96. Zhu ZH, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02317-2