Greater male than female variability in regional brain structure across the lifespan

Carregando...
Imagem de Miniatura
Citações na Scopus
52
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
WIERENGA, Lara M.
DOUCET, Gaelle E.
DIMA, Danai
AGARTZ, Ingrid
AGHAJANI, Moji
AKUDJEDU, Theophilus N.
ALBAJES-EIZAGIRRE, Anton
ALNAES, Dag
I, Kathryn Alpert
ANDREASSEN, Ole A.
Citação
HUMAN BRAIN MAPPING, v.43, n.1, Special Issue, p.470-499, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
Palavras-chave
Referências
  1. Alnaes D, 2019, JAMA PSYCHIAT, V76, P739, DOI 10.1001/jamapsychiatry.2019.0257
  2. Arden R, 2006, PERS INDIV DIFFER, V41, P39, DOI 10.1016/j.paid.2005.11.027
  3. Arnold AP, 2012, TRENDS GENET, V28, P55, DOI 10.1016/j.tig.2011.10.004
  4. Aron AR, 2004, TRENDS COGN SCI, V8, P170, DOI 10.1016/j.tics.2004.02.010
  5. Baare WFC, 2001, CEREB CORTEX, V11, P816, DOI 10.1093/cercor/11.9.816
  6. Bao AM, 2010, NEUROSCIENTIST, V16, P550, DOI 10.1177/1073858410377005
  7. Baye A, 2016, LARGE-SCALE ASSESS E, V4, DOI 10.1186/s40536-015-0015-x
  8. BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x
  9. Borkenau P, 2013, J RES PERS, V47, P135, DOI 10.1016/j.jrp.2012.12.001
  10. Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324
  11. Burgess N, 2002, NEURON, V35, P625, DOI 10.1016/S0896-6273(02)00830-9
  12. Buzsaki G, 2013, NEURON, V80, P751, DOI 10.1016/j.neuron.2013.10.002
  13. Chen XQ, 2008, DEV NEUROBIOL, V68, P265, DOI 10.1002/dneu.20581
  14. Costello EJ, 2003, ARCH GEN PSYCHIAT, V60, P837, DOI 10.1001/archpsyc.60.8.837
  15. Craig IW, 2009, PERSPECT PSYCHOL SCI, V4, P615, DOI 10.1111/j.1745-6924.2009.01170.x
  16. Dale AM, 1999, NEUROIMAGE, V9, P179, DOI 10.1006/nimg.1998.0395
  17. Dawson G, 2000, DEV PSYCHOPATHOL, V12, P695, DOI 10.1017/S0954579400004089
  18. Del Giudice M, 2016, P NATL ACAD SCI USA, V113, pE1965, DOI 10.1073/pnas.1525534113
  19. Desikan RS, 2006, NEUROIMAGE, V31, P968, DOI 10.1016/j.neuroimage.2006.01.021
  20. Dima D., 2020, BIORXIV, DOI [DOI 10.1101/2020.05.05.079475, 10.1101/2020.05.05.079475v1.abstract]
  21. Eyler LT, 2011, CEREB CORTEX, V21, P2313, DOI 10.1093/cercor/bhr013
  22. Fischl B, 1999, HUM BRAIN MAPP, V8, P272, DOI 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
  23. Fischl B, 2002, NEURON, V33, P341, DOI 10.1016/S0896-6273(02)00569-X
  24. Forde NJ, 2020, CEREB CORTEX, V30, P5420, DOI 10.1093/cercor/bhaa123
  25. Frangou S., 2020, BIORXIV, DOI [10.1101/2020.05.05.077834v1.abstract, DOI 10.1101/2020.05.05.077834]
  26. Goldstein JM, 2002, ARCH GEN PSYCHIAT, V59, P154, DOI 10.1001/archpsyc.59.2.154
  27. Grillner S, 2005, TRENDS NEUROSCI, V28, P364, DOI 10.1016/j.tins.2005.05.004
  28. Herting MM, 2018, NEUROIMAGE, V172, P194, DOI 10.1016/j.neuroimage.2018.01.020
  29. Hyde JS, 2014, ANNU REV PSYCHOL, V65, P373, DOI 10.1146/annurev-psych-010213-115057
  30. Jahanshad N, 2017, J NEUROSCI RES, V95, P371, DOI 10.1002/jnr.23919
  31. Joel D, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0451
  32. Joel D, 2015, P NATL ACAD SCI USA, V112, P15468, DOI 10.1073/pnas.1509654112
  33. Johnson W, 2009, PERSPECT PSYCHOL SCI, V4, P598, DOI 10.1111/j.1745-6924.2009.01168.x
  34. Johnson W, 2008, PERSPECT PSYCHOL SCI, V3, P518, DOI 10.1111/j.1745-6924.2008.00096.x
  35. KATZMAN S, 1992, REV EDUC RES, V62, P427, DOI 10.3102/00346543062004427
  36. Koolschijn PCMP, 2013, DEV COGN NEUROS-NETH, V5, P106, DOI 10.1016/j.dcn.2013.02.003
  37. Kremen WS, 2013, AM J MED GENET B, V162, P751, DOI 10.1002/ajmg.b.32162
  38. Lehre AC, 2009, DEV PSYCHOBIOL, V51, P198, DOI 10.1002/dev.20358
  39. Lerch JP, 2006, NEUROIMAGE, V31, P993, DOI 10.1016/j.neuroimage.2006.01.042
  40. Marwha D, 2017, NEUROIMAGE, V147, P282, DOI 10.1016/j.neuroimage.2016.12.021
  41. Meinshausen N, 2006, J MACH LEARN RES, V7, P983
  42. Mowinckel A.M., 2019, ARXIV PREPRINT ARXIV
  43. Northoff' G, 2019, NEUROSCI BIOBEHAV R, V104, P11, DOI 10.1016/j.neubiorev.2019.06.030
  44. Pardoe HR, 2016, NEUROIMAGE, V135, P177, DOI 10.1016/j.neuroimage.2016.05.005
  45. Pfefferbaum A, 2004, NEUROBIOL AGING, V25, P175, DOI 10.1016/S0197-4580(03)00045-9
  46. Pomponio R, 2020, NEUROIMAGE, V208, DOI 10.1016/j.neuroimage.2019.116450
  47. Reinhold K, 2013, EVOLUTION, V67, P3662, DOI 10.1111/evo.12224
  48. Reuter M, 2015, NEUROIMAGE, V107, P107, DOI 10.1016/j.neuroimage.2014.12.006
  49. Ritchie SJ, 2018, CEREB CORTEX, V28, P2959, DOI 10.1093/cercor/bhy109
  50. Roalf DR, 2014, NEUROPSYCHOLOGY, V28, P506, DOI 10.1037/neu0000067
  51. Rousselet GA, 2017, EUR J NEUROSCI, V46, P1738, DOI 10.1111/ejn.13610
  52. Ruigrok ANV, 2014, NEUROSCI BIOBEHAV R, V39, P34, DOI 10.1016/j.neubiorev.2013.12.004
  53. Ryan SG, 1997, NAT GENET, V17, P92, DOI 10.1038/ng0997-92
  54. Stevens CF, 1989, NEURAL COMPUT, V1, P473, DOI 10.1162/neco.1989.1.4.473
  55. Tamnes CK, 2017, J NEUROSCI, V37, P3402, DOI 10.1523/JNEUROSCI.3302-16.2017
  56. Tan A, 2016, NEUROIMAGE, V124, P350, DOI 10.1016/j.neuroimage.2015.08.050
  57. van Erp TGM, 2019, BIOL PSYCHIAT, V85, pE35, DOI 10.1016/j.biopsych.2018.10.003
  58. Wierenga LM, 2019, J COGNITIVE NEUROSCI, V31, P730, DOI 10.1162/jocn_a_01375
  59. Wierenga LM, 2018, PSYCHONEUROENDOCRINO, V91, P105, DOI 10.1016/j.psyneuen.2018.02.034
  60. Wierenga LM, 2018, CEREB CORTEX, V28, P2741, DOI 10.1093/cercor/bhx154
  61. Wu H, 2014, NEURON, V81, P103, DOI 10.1016/j.neuron.2013.10.051
  62. Zabihi M, 2019, BIOL PSYCHIAT-COGN N, V4, P567, DOI 10.1016/j.bpsc.2018.11.013