Aging Aggravates Cachexia in Tumor-Bearing Mice

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
GEPPERT, Julia
WALTH, Alina A.
EXPOSITO, Raul Terron
KALTENECKER, Doris
MORIGNY, Pauline
MACHADO, Juliano
BECKER, Maike
LIMA, Joanna D. C. C.
DANIEL, Carolin
Citação
CANCERS, v.14, n.1, article ID 90, 21p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Simple Summary Cachexia is a deadly disease that accompanies many different types of cancers. Animal studies on cachexia have so far mostly been conducted using young mice, while cancer in humans is a disease of high age. Mouse models used to date may therefore not be suitable to study cachexia with relevance to patients. By comparing young and old mice of three different strains and two different tumor types, we here show that the age of mice has a substantial effect on cachexia progression (specifically body weight, tissue weight, fiber size, molecular markers) that is dependent on the mouse strain studied. This is independent of glucose tolerance. The cachexia markers IL6 and GDF15 differ between ages in both mice and patients. Future studies on cachexia should consider the age and strain of mice. Background: Cancer is primarily a disease of high age in humans, yet most mouse studies on cancer cachexia are conducted using young adolescent mice. Given that metabolism and muscle function change with age, we hypothesized that aging may affect cachexia progression in mouse models. Methods: We compare tumor and cachexia development in young and old mice of three different strains (C57BL/6J, C57BL/6N, BALB/c) and with two different tumor cell lines (Lewis Lung Cancer, Colon26). Tumor size, body and organ weights, fiber cross-sectional area, circulating cachexia biomarkers, and molecular markers of muscle atrophy and adipose tissue wasting are shown. We correlate inflammatory markers and body weight dependent on age in patients with cancer. Results: We note fundamental differences between mouse strains. Aging aggravates weight loss in LLC-injected C57BL/6J mice, drives it in C57BL/6N mice, and does not influence weight loss in C26-injected BALB/c mice. Glucose tolerance is unchanged in cachectic young and old mice. The stress marker GDF15 is elevated in cachectic BALB/c mice independent of age and increased in old C57BL/6N and J mice. Inflammatory markers correlate significantly with weight loss only in young mice and patients. Conclusions: Aging affects cachexia development and progression in mice in a strain-dependent manner and influences the inflammatory profile in both mice and patients. Age is an important factor to consider for future cachexia studies.
Palavras-chave
aging, cachexia, cancer, mouse models
Referências
  1. Aguilar-Cazares D, 2019, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.01399
  2. Enriquez JA, 2019, NAT METAB, V1, P5, DOI 10.1038/s42255-018-0018-3
  3. Beheshti A, 2015, CANCER RES, V75, P1134, DOI 10.1158/0008-5472.CAN-14-1053
  4. Berben Lieze, 2021, Cancers (Basel), V13, DOI 10.3390/cancers13061400
  5. Cao ZP, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22094501
  6. Coletti D, 2013, SCI WORLD J, DOI 10.1155/2013/237260
  7. Das SK, 2011, SCIENCE, V333, P233, DOI 10.1126/science.1198973
  8. Dunne RF, 2019, CANCERS, V11, DOI 10.3390/cancers11121861
  9. Ebert SM, 2019, PHYSIOLOGY, V34, P232, DOI 10.1152/physiol.00003.2019
  10. ERSHLER WB, 1993, LYMPHOKINE CYTOK RES, V12, P225
  11. Evans WJ, 2008, CLIN NUTR, V27, P793, DOI 10.1016/j.clnu.2008.06.013
  12. Fearon K, 2011, LANCET ONCOL, V12, P489, DOI 10.1016/S1470-2045(10)70218-7
  13. Fearon KCH, 2012, CELL METAB, V16, P153, DOI 10.1016/j.cmet.2012.06.011
  14. Feldman JP, 2009, J APPL QUANT METHODS, V4, P455
  15. Garg SK, 2014, AGING CELL, V13, P441, DOI 10.1111/acel.12191
  16. Gaugler M, 2011, J APPL PHYSIOL, V111, P192, DOI 10.1152/japplphysiol.00175.2011
  17. Gil CI, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-56922-w
  18. Guaraldi G, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0212283
  19. Hall DT, 2011, AGING-US, V3, P702, DOI 10.18632/aging.100358
  20. Hingorani SR, 2005, CANCER CELL, V7, P469, DOI 10.1016/j.ccr.2005.04.023
  21. Kuraguchi M, 2006, PLOS GENET, V2, P1362, DOI 10.1371/journal.pgen.0020146
  22. Laurens C, 2020, JCI INSIGHT, V5, DOI 10.1172/jci.insight.131870
  23. Lee CM, 2020, J CACHEXIA SARCOPENI, V11, P1270, DOI 10.1002/jcsm.12575
  24. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  25. Martignoni ME, 2005, CLIN CANCER RES, V11, P5802, DOI 10.1158/1078-0432.CCR-05-0185
  26. Mohr H, 2021, CANCERS, V13, DOI 10.3390/cancers13010126
  27. Morigny P, 2020, J CACHEXIA SARCOPENI, V11, P1459, DOI 10.1002/jcsm.12626
  28. Niu MY, 2021, CELL DEATH DIS, V12, DOI 10.1038/s41419-021-03932-0
  29. Osawa Y, 2020, AGING CELL, V19, DOI 10.1111/acel.13132
  30. Rashidi B, 2000, CLIN EXP METASTAS, V18, P57, DOI 10.1023/A:1026596131504
  31. Rohm M, 2020, CELL METAB, V32, P331, DOI 10.1016/j.cmet.2020.08.003
  32. Rohm M, 2019, EMBO REP, V20, DOI 10.15252/embr.201847258
  33. Rohm M, 2016, NAT MED, V22, P1120, DOI 10.1038/nm.4171
  34. Rupert JE, 2021, J EXP MED, V218, DOI 10.1084/jem.20190450
  35. Sayer AA, 2013, AGE AGEING, V42, P145, DOI 10.1093/ageing/afs191
  36. SHERRY BA, 1989, FASEB J, V3, P1956, DOI 10.1096/fasebj.3.8.2721856
  37. Sim BC, 1998, CURR BIOL, V8, P701, DOI 10.1016/S0960-9822(98)70276-3
  38. Simon MM, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-7-r82
  39. Suriben R, 2020, NAT MED, V26, P1264, DOI 10.1038/s41591-020-0945-x
  40. Talbert E, 2014, J CACHEXIA SARCOPENI, V5, P321, DOI 10.1007/s13539-014-0141-2
  41. TANAKA Y, 1990, CANCER RES, V50, P2290
  42. Ullman-Cullere MH, 1999, LAB ANIM SCI, V49, P319
  43. Wang S, 2020, LIFE SCI, V242, DOI 10.1016/j.lfs.2019.117242
  44. Watanabe H, 2004, SHOCK, V22, P460, DOI 10.1097/01.shk.0000142249.08135.e9