Neuroplasticity and non-invasive brain stimulation in the developing brain

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER ACADEMIC PRESS INC
Autores
BANDEIR, Igor D.
LINS-SILVA, Daniel H.
BAROUH, Judah L.
FARIA-GUIMARAES, Daniela
DOREA-BANDEIRA, Ingrid
SOUZA, Lucca S.
ALVES, Gustavo S.
NITSCHE, Michael
FREGNI, Felipe
Citação
NON-INVASIVE BRAIN STIMULATION (NIBS) IN NEURODEVELOPMENTAL DISORDERS, v.264, p.57-89, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The brain is a dynamic organ whose growth and organization varies according to each subject's life experiences. Through adaptations in gene expression and the release of neurotrophins and neurotransmitters, these experiences induce a process of cellular realignment and neural network reorganization, which consolidate what is called neuroplasticity. However, despite the brain's resilience and dynamism, neuroplasticity is maximized during the first years of life, when the developing brain is more sensitive to structural reorganization and the repair of damaged neurons. This review presents an overview of non-invasive brain stimulation (NIBS) techniques that have increasingly been a focus for experimental research and the development of therapeutic methods involving neuroplasticity, especially Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS). Due to its safety risk profile and extensive tolerability, several trials have demonstrated the benefits of NIBS as a feasible experimental alternative for the treatment of brain and mind disorders in children and adolescents. However, little is known about the late impact of neuroplasticity-inducing tools on the developing brain, and there are concerns about aberrant plasticity. There are also ethical considerations when performing interventions in the pediatric population. This article will therefore review these aspects and also obstacles related to the premature application of NIBS, given the limited evidence available concerning the extent to which these methods interfere with the developing brain.
Palavras-chave
Neuroplasticity, NIBS, Children, Adolescents, Transcranial direct current stimulation, Transcranial magnetic stimulation
Referências
  1. Abbott AE, 2016, CEREB CORTEX, V26, P4034, DOI 10.1093/cercor/bhv191
  2. Allen EA, 2007, SCIENCE, V317, P1918, DOI 10.1126/science.1146426
  3. Amatachaya A, 2015, BEHAV NEUROL, V2015, DOI 10.1155/2015/928631
  4. Amatachaya A, 2014, BEHAV NEUROL, V2014, DOI 10.1155/2014/173073
  5. Andersen SL, 2008, TRENDS NEUROSCI, V31, P183, DOI 10.1016/j.tins.2008.01.004
  6. Andrade AC, 2014, J CHILD NEUROL, V29, P1360, DOI 10.1177/0883073813503710
  7. Antal A, 2017, CLIN NEUROPHYSIOL, V128, P1774, DOI 10.1016/j.clinph.2017.06.001
  8. Antal A, 2007, EUR J NEUROSCI, V26, P2687, DOI 10.1111/j.1460-9568.2007.05896.x
  9. Bandeira ID, 2021, CNS SPECTRUMS, V26, P319, DOI 10.1017/S1092852919001810
  10. Bandeira ID, 2018, INT J MED EDUC, V9, P170, DOI 10.5116/ijme.5b1b.b0a2
  11. Bandeira ID, 2016, J CHILD NEUROL, V31, P918, DOI 10.1177/0883073816630083
  12. Palm U, 2016, J NEURAL TRANSM, V123, P1219, DOI 10.1007/s00702-016-1572-z
  13. Pan F, 2018, NEUROPSYCH DIS TREAT, V14, P2675, DOI 10.2147/NDT.S176125
  14. Paolicelli RC, 2011, SCIENCE, V333, P1456, DOI 10.1126/science.1202529
  15. Pascual-Leone A, 2005, ANNU REV NEUROSCI, V28, P377, DOI 10.1146/annurev.neuro.27.070203.144216
  16. Pittenger Christopher, 2007, CNS & Neurological Disorders-Drug Targets, V6, P101, DOI 10.2174/187152707780363267
  17. Guimaraes RSQ, 2021, MEDICINE, V100, DOI 10.1097/MD.0000000000024283
  18. Radhu N, 2013, CLIN NEUROPHYSIOL, V124, P1309, DOI 10.1016/j.clinph.2013.01.014
  19. Barnea-Goraly N, 2014, PROG NEURO-PSYCHOPH, V48, P124, DOI 10.1016/j.pnpbp.2013.09.010
  20. Rajapakse T, 2013, TRANSL NEUROSCI, V4, P217, DOI 10.2478/s13380-013-0116-3
  21. Rakhade SN, 2009, NAT REV NEUROL, V5, P380, DOI 10.1038/nrneurol.2009.80
  22. Correia-Melo FS, 2018, MEDICINE, V97, DOI 10.1097/MD.0000000000012414
  23. Rios Debora Medeiros, 2018, Child Neurol Open, V5, p2329048X18798255, DOI 10.1177/2329048X18798255
  24. Rubia K, 2018, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00100
  25. Rubio B, 2016, J CHILD NEUROL, V31, P784, DOI 10.1177/0883073815615672
  26. Saleem GT, 2019, ARCH PHYS MED REHAB, V100, P724, DOI 10.1016/j.apmr.2018.10.011
  27. Sanchez-Leon C.A., 2020, BIORXIV2020090428288, V2020, DOI [10.1101/2020.09.04.282889, DOI 10.1101/2020.09.04.282889]
  28. Schneider HD, 2011, CLIN LINGUIST PHONET, V25, P640, DOI 10.3109/02699206.2011.570852
  29. Schrader LM, 2011, EPILEPSY BEHAV, V22, P475, DOI 10.1016/j.yebeh.2011.06.026
  30. Shahid S, 2014, BIOELECTROMAGNETICS, V35, P41, DOI 10.1002/bem.21814
  31. Barreto TM, 2020, DEV MED CHILD NEUROL, V62, P163, DOI 10.1111/dmcn.14321
  32. Shepherd, 2004, SYNAPTIC ORG BRAIN, P499, DOI [10.1093/acprof:oso/9780195159561.003.0012, DOI 10.1093/ACPROF:OSO/9780195159561.003]
  33. Cortese S, 2012, AM J PSYCHIAT, V169, P1038, DOI 10.1176/appi.ajp.2012.11101521
  34. Silva-Moraes MH, 2020, J AFFECT DISORDERS, V277, P688, DOI 10.1016/j.jad.2020.08.066
  35. Simis M, 2013, NEUROREPORT, V24, P973, DOI 10.1097/WNR.0000000000000021
  36. Skeide MA, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1602612
  37. Smith Gwenn S, 2013, Dialogues Clin Neurosci, V15, P3
  38. Soff C, 2017, J NEURAL TRANSM, V124, P133, DOI 10.1007/s00702-016-1646-y
  39. Sotnikova A, 2017, BRAIN TOPOGR, V30, P656, DOI 10.1007/s10548-017-0552-4
  40. Stagg CJ, 2018, J ECT, V34, P144, DOI 10.1097/YCT.0000000000000510
  41. Stagg CJ, 2009, J NEUROSCI, V29, P5202, DOI 10.1523/JNEUROSCI.4432-08.2009
  42. Suh HS, 2012, PHYS MED BIOL, V57, P6961, DOI 10.1088/0031-9155/57/21/6961
  43. Barretto TL, 2019, CLIN NEUROL NEUROSUR, V182, P123, DOI 10.1016/j.clineuro.2019.05.009
  44. Costanzo F, 2019, NEUROPSYCHOLOGIA, V130, P38, DOI 10.1016/j.neuropsychologia.2018.03.016
  45. Teter B, 2002, J NEUROSCI RES, V68, P331, DOI 10.1002/jnr.10221
  46. Thapar A, 2016, LANCET, V387, P1240, DOI 10.1016/S0140-6736(15)00238-X
  47. Tsuji T, 2002, J PHYSIOL-LONDON, V540, P367, DOI 10.1113/jphysiol.2001.013504
  48. Utz KS, 2010, NEUROPSYCHOLOGIA, V48, P2789, DOI 10.1016/j.neuropsychologia.2010.06.002
  49. Vieira F, 2021, GEN HOSP PSYCHIAT, V68, P97, DOI 10.1016/j.genhosppsych.2020.12.011
  50. Voss P, 2019, SCHIZOPHR RES, V207, P3, DOI 10.1016/j.schres.2018.04.025
  51. Wang HN, 2017, TRANSL PSYCHIAT, V7, DOI 10.1038/s41398-017-0001-x
  52. Yang XR, 2014, J ECT, V30, P242, DOI 10.1097/YCT.0000000000000094
  53. Yukimasa T, 2006, PHARMACOPSYCHIATRY, V39, P52, DOI 10.1055/s-2006-931542
  54. Zanardini R, 2006, J AFFECT DISORDERS, V91, P83, DOI 10.1016/j.jad.2005.12.029
  55. Costanzo F, 2016, NEUROREPORT, V27, P295, DOI 10.1097/WNR.0000000000000536
  56. Bavelier D, 2010, J NEUROSCI, V30, P14964, DOI 10.1523/JNEUROSCI.4812-10.2010
  57. Zewdie E., 2018, CLIN NEUROPHYSIOL, V129, pe123, DOI [10.1016/j.clinph.2018.04.313, DOI 10.1016/J.CLINPH.2018.04.313, 10.1016/J.CLINPH.2018.04.313]
  58. Zhang HJ, 2015, PSYCHIAT CLIN NEUROS, V69, P22, DOI 10.1111/pcn.12209
  59. Zhang TH, 2019, BRAIN STIMUL, V12, P103, DOI 10.1016/j.brs.2018.09.007
  60. Zhou M, 2017, PROG NEURO-PSYCHOPH, V75, P157, DOI 10.1016/j.pnpbp.2017.02.001
  61. Berger I., 2019, COLD SPRING HARB SYM, V132, P699, DOI [10.1101/19005983, DOI 10.1101/19005983]
  62. Berger Julia Marie, 2013, Biol Syst Open Access, V1, DOI 10.4172/2329-6577.1000118
  63. Bick J, 2016, NEUROPSYCHOPHARMACOL, V41, P177, DOI 10.1038/npp.2015.252
  64. Bikson M, 2016, BRAIN STIMUL, V9, P641, DOI 10.1016/j.brs.2016.06.004
  65. Bliss TVP, 2013, MOL BRAIN, V6, DOI 10.1186/1756-6606-6-5
  66. Cowan M, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02576
  67. Bronfman ZZ, 2014, FRONT INTEGR NEUROSC, V8, DOI 10.3389/fnint.2014.00055
  68. Brunoni AR, 2012, BRAIN STIMUL, V5, P175, DOI 10.1016/j.brs.2011.03.002
  69. Burke MJ, 2019, HAND CLINIC, V163, P73, DOI 10.1016/B978-0-12-804281-6.00005-7
  70. Camsari DD, 2019, INT J NEUROPSYCHOPH, V22, P435, DOI 10.1093/ijnp/pyz021
  71. Cancer A, 2018, FRONT BEHAV NEUROSCI, V12, DOI 10.3389/fnbeh.2018.00162
  72. CANTOR DS, 1986, J AUTISM DEV DISORD, V16, P169, DOI 10.1007/BF01531728
  73. Cao PF, 2018, NEUROPSYCH DIS TREAT, V14, P3231, DOI 10.2147/NDT.S182527
  74. Chaieb L, 2015, FRONT NEUROSCI-SWITZ, V9, DOI 10.3389/fnins.2015.00125
  75. Chang YM, 2014, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.00035
  76. Chen H, 2017, AUTISM RES, V10, P1776, DOI 10.1002/aur.1834
  77. Croarkin PE, 2019, CHILD ADOL PSYCH CL, V28, P33, DOI 10.1016/j.chc.2018.07.003
  78. Chervyakov AV, 2015, FRONT HUM NEUROSCI, V9, DOI 10.3389/fnhum.2015.00303
  79. Grecco LAC, 2013, BMC PEDIATR, V13, DOI 10.1186/1471-2431-13-168
  80. Cook IA, 2015, THER DELIV, V6, P273, DOI [10.4155/TDE.14.120, 10.4155/tde.14.120]
  81. Correia-Melo FS, 2020, J AFFECT DISORDERS, V264, P527, DOI 10.1016/j.jad.2019.11.086
  82. Croarkin PE, 2018, J AFFECT DISORDERS, V239, P282, DOI 10.1016/j.jad.2018.06.048
  83. Croarkin PE, 2016, PSYCHIAT RES-NEUROIM, V247, P25, DOI 10.1016/j.pscychresns.2015.11.005
  84. Croarkin PE, 2012, J CHILD ADOL PSYCHOP, V22, P56, DOI 10.1089/cap.2011.0054
  85. Croarkin PE, 2011, INT REV PSYCHIATR, V23, P445, DOI 10.3109/09540261.2011.623688
  86. Maslen H, 2014, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.00953
  87. D'Mello AM, 2018, LANG SPEECH HEAR SER, V49, P798, DOI 10.1044/2018_LSHSS-DYSLC-18-0020
  88. D'Urso G, 2014, BIOL PSYCHIAT, V76, pE5, DOI 10.1016/j.biopsych.2013.11.009
  89. Davis NJ, 2014, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.00600
  90. Davis NJ, 2013, FRONT SYST NEUROSCI, V7, DOI 10.3389/fnsys.2013.00076
  91. Dayan E, 2013, NAT NEUROSCI, V16, P838, DOI 10.1038/nn.3422
  92. Debowska W, 2016, FRONT NEUROSCI-SWITZ, V10, DOI 10.3389/fnins.2016.00460
  93. Delfino RS, 2020, CURR BEHAV NEUROSCI, V7, P76, DOI 10.1007/s40473-020-00201-w
  94. Fatemi SH, 2009, SCHIZOPHRENIA BULL, V35, P528, DOI 10.1093/schbul/sbn187
  95. Feldman DE, 2009, ANNU REV NEUROSCI, V32, P33, DOI 10.1146/annurev.neuro.051508.135516
  96. Finisguerra A, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.00135
  97. Mayer G, 2012, J ECT, V28, P84, DOI 10.1097/YCT.0b013e318238f01a
  98. Finn ES, 2014, BIOL PSYCHIAT, V76, P397, DOI 10.1016/j.biopsych.2013.08.031
  99. Fitz NS, 2015, J MED ETHICS, V41, P410, DOI 10.1136/medethics-2013-101458
  100. Fregni F, 2021, INT J NEUROPSYCHOPH, V24, P256, DOI 10.1093/ijnp/pyaa051
  101. Fritsch B, 2010, NEURON, V66, P198, DOI 10.1016/j.neuron.2010.03.035
  102. Gedge Laura, 2012, Front Psychiatry, V3, P12, DOI 10.3389/fpsyt.2012.00012
  103. Gellner AK, 2016, FRONT CELL NEUROSCI, V10, DOI 10.3389/fncel.2016.00188
  104. Gillick BT, 2014, DEV MED CHILD NEUROL, V56, P44, DOI 10.1111/dmcn.12243
  105. Hallett M, 2007, NEURON, V55, P187, DOI 10.1016/j.neuron.2007.06.026
  106. Hameed MQ, 2017, CURR NEUROL NEUROSCI, V17, DOI 10.1007/s11910-017-0719-0
  107. Hart H, 2013, JAMA PSYCHIAT, V70, P185, DOI 10.1001/jamapsychiatry.2013.277
  108. McCarthy H, 2014, PSYCHOL MED, V44, P869, DOI 10.1017/S0033291713001037
  109. Hart H, 2012, NEUROSCI BIOBEHAV R, V36, P2248, DOI 10.1016/j.neubiorev.2012.08.003
  110. Harty S, 2019, PSYCHOL SCI, V30, P1318, DOI 10.1177/0956797619856658
  111. He WJ, 2020, NEUROSCI LETT, V719, DOI 10.1016/j.neulet.2018.02.045
  112. Hensch TK, 2005, NAT REV NEUROSCI, V6, P877, DOI 10.1038/nrn1787
  113. Heyer DB, 2017, NEUROTOXICOLOGY, V58, P23, DOI 10.1016/j.neuro.2016.10.017
  114. HODGKIN AL, 1990, B MATH BIOL, V52, P25, DOI 10.1007/BF02459568
  115. Jacobson L, 2012, EXP BRAIN RES, V216, P1, DOI 10.1007/s00221-011-2891-9
  116. Kadosh KC, 2015, HUM BRAIN MAPP, V36, P4334, DOI 10.1002/hbm.22921
  117. Kadosh RC, 2012, CURR BIOL, V22, pR108, DOI 10.1016/j.cub.2012.01.013
  118. Kang JN, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00201
  119. McClung CA, 2008, NEUROPSYCHOPHARMACOL, V33, P3, DOI 10.1038/sj.npp.1301544
  120. Keller TA, 2016, NEUROIMAGE, V125, P256, DOI 10.1016/j.neuroimage.2015.10.015
  121. Kessler RC, 2009, EPIDEMIOL PSICHIAT S, V18, P23, DOI 10.1017/S1121189X00001421
  122. Kessler SK, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076112
  123. Kirton A., 2015, CAN J NEUROL SCI, DOI [10.1017/CJN.2015.67, DOI 10.1017/CJN.2015.67]
  124. Kirton A, 2017, NEUROLOGY, V88, P259, DOI 10.1212/WNL.0000000000003518
  125. Kirton A, 2016, NEUROLOGY, V86, P1659, DOI 10.1212/WNL.0000000000002646
  126. Kirton A, 2013, PEDIATR NEUROL, V48, P81, DOI 10.1016/j.pediatrneurol.2012.08.001
  127. Klomjai W, 2015, ANN PHYS REHABIL MED, V58, P208, DOI 10.1016/j.rehab.2015.05.005
  128. Kolb B, 2017, COGNITIVE DEV, V42, P15, DOI 10.1016/j.cogdev.2017.01.001
  129. Krause B, 2013, DEV COGN NEUROS-NETH, V6, P176, DOI 10.1016/j.dcn.2013.04.001
  130. McEwen BS, 2013, NEURON, V79, P16, DOI 10.1016/j.neuron.2013.06.028
  131. Krishnan C, 2015, BRAIN STIMUL, V8, P76, DOI 10.1016/j.brs.2014.10.012
  132. Kuo HC, 2018, NEUROREHAB NEURAL RE, V32, P941, DOI 10.1177/1545968318801546
  133. Lauro LJR, 2014, CORTEX, V58, P99, DOI 10.1016/j.cortex.2014.05.003
  134. Leal GC, 2021, EUR ARCH PSY CLIN N, V271, P577, DOI 10.1007/s00406-020-01110-5
  135. Lei D, 2015, NEUROPSYCHOLOGY, V29, P874, DOI 10.1037/neu0000200
  136. Levman J, 2018, INT J DEV NEUROSCI, V71, P34, DOI 10.1016/j.ijdevneu.2018.08.001
  137. Lewerenz J, 2015, FRONT NEUROSCI-SWITZ, V9, DOI 10.3389/fnins.2015.00469
  138. Looi CY, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04649-x
  139. Lord C, 2018, LANCET, V392, P508, DOI 10.1016/S0140-6736(18)31129-2
  140. Lu B, 2014, Handb Exp Pharmacol, V220, P223, DOI 10.1007/978-3-642-45106-5_9
  141. McGough JJ, 2019, J AM ACAD CHILD PSY, V58, P403, DOI 10.1016/j.jaac.2018.11.013
  142. Luscher C, 2012, CSH PERSPECT BIOL, V4, DOI 10.1101/cshperspect.a005710
  143. Lyon GR, 2003, ANN DYSLEXIA, V53, P1, DOI 10.1007/s11881-003-0001-9
  144. Mall V, 2004, NEUROPEDIATRICS, V35, P120, DOI 10.1055/s-2004-815834
  145. Marco EM, 2011, NEUROTOX RES, V19, P286, DOI 10.1007/s12640-010-9205-z
  146. Medeiros Liciane Fernandes, 2012, Front Psychiatry, V3, P110, DOI 10.3389/fpsyt.2012.00110
  147. Mercante B, 2017, NEUROSCIENCE, V361, P69, DOI 10.1016/j.neuroscience.2017.08.012
  148. Meredith RM, 2015, NEUROSCI BIOBEHAV R, V50, P180, DOI 10.1016/j.neubiorev.2014.12.001
  149. Meredith RM, 2012, TRENDS NEUROSCI, V35, P335, DOI 10.1016/j.tins.2012.03.005
  150. BARKER AT, 1985, LANCET, V1, P1106
  151. Mill J, 2008, J CHILD PSYCHOL PSYC, V49, P1020, DOI 10.1111/j.1469-7610.2008.01909.x
  152. Mirkowski M, 2019, EUR J PEDIATR, V178, P433, DOI 10.1007/s00431-019-03350-7
  153. Monai H, 2018, NEUROSCI RES, V126, P15, DOI 10.1016/j.neures.2017.08.012
  154. Monte-Silva K, 2013, BRAIN STIMUL, V6, P424, DOI 10.1016/j.brs.2012.04.011
  155. Murias M, 2007, BIOL PSYCHIAT, V62, P270, DOI 10.1016/j.biopsych.2006.11.012
  156. Nemanich ST, 2019, FRONT HUM NEUROSCI, V13, DOI 10.3389/fnhum.2019.00137
  157. Neniskyte U, 2017, NAT REV NEUROSCI, V18, P658, DOI 10.1038/nrn.2017.110
  158. Nitsche MA, 2006, EUR J NEUROSCI, V23, P1651, DOI 10.1111/j.1460-9568.2006.04676.x
  159. Nitsche MA, 2001, NEUROLOGY, V57, P1899, DOI 10.1212/WNL.57.10.1899
  160. Nitsche MA, 2000, J PHYSIOL-LONDON, V527, P633, DOI 10.1111/j.1469-7793.2000.t01-1-00633.x
  161. Barnea-Goraly N, 2005, CEREB CORTEX, V15, P1848, DOI 10.1093/cercor/bhi062
  162. Nitsche MA, 2003, J PHYSIOL-LONDON, V553, P293, DOI 10.1113/jphysiol.2003.049916
  163. Nitsche MA, 2012, J PHYSIOL-LONDON, V590, P4641, DOI 10.1113/jphysiol.2012.232975
  164. Norman LJ, 2016, JAMA PSYCHIAT, V73, P815, DOI 10.1001/jamapsychiatry.2016.0700