Effects of time-controlled adaptive ventilation on cardiorespiratory parameters and inflammatory response in experimental emphysema

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PHYSIOLOGICAL SOC
Autores
OLIVEIRA, Milena Vasconcellos de
MAGALHAES, Raquel Ferreira de
ROCHA, Nazareth de Novaes
FERNANDES, Marcus Vinicius
ANTUNES, Mariana Alves
MORALES, Marcelo Marcos
SATALIN, Joshua
ANDREWS, Penny
HABASHI, Nader M.
Citação
JOURNAL OF APPLIED PHYSIOLOGY, v.132, n.2, p.564-574, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The time-controlled adaptive ventilation (TCAV) method attenuates lung damage in acute respiratory distress syndrome. However, so far, no study has evaluated the impact of the TCAV method on ventilator-induced lung injury (VILI) and cardiac function in emphysema. We hypothesized that the use of the TCAV method to achieve an expiratory flow termination/expiratory peak flow (E-FT/E-PF) of 25% could reduce VILI and improve right ventricular function in elastase-induced lung emphysema in rats. Five weeks after the last intratracheal instillation of elastase, animals were anesthetized and mechanically ventilated for 1 h using TCAV adjusted to either E-FT/E-PF 25% or E-FT/E-PF 75%, the latter often applied in acute respiratory distress syndrome (ARDS). Pressure-controlled ventilation (PCV) groups with positive end-expiratory pressure levels similar to positive end-release pressure in TCAV with E-FT/E-PF 25% and E-FT/E-PF 75% were also analyzed. Echocardiography and lung ultrasonography were monitored. Lung morphometry, alveolar heterogeneity, and biological markers related to inflammation [interleukin 6 (IL-6), CINC-1], alveolar pulmonary stretch (amphiregulin), lung matrix damage [metalloproteinase 9 (MMP-9)] were assessed. E-FT/E-PF 25% reduced respiratory system peak pressure, mean linear intercept, B lines at lung ultrasonography, and increased pulmonary acceleration time/ pulmonary ejection time ratio compared with E-FT/E-PF 75%. The volume fraction of mononuclear cells, neutrophils, and expression of IL-6, CINC-1, amphiregulin, and MMP-9 were lower with E-FT/E-PF 25% than with E-FT/E-PF 75%. In conclusion, TCAV with E-FT/E-PF 25%, compared with E-FT/E-PF 75%, led to less lung inflammation, hyperinflation, and pulmonary arterial hypertension, which may be a promising strategy for patients with emphysema. NEW & NOTEWORTHY The TCAV method reduces lung damage in ARDS. However, so far, no study has evaluated the impact of the TCAV method on ventilator-induced lung injury and cardiac function in experimental emphysema. The TCAV method at E-FT/E-PF ratio of 25%, compared with E-FT/E-PF of 75% (frequently used in ARDS), reduced lung inflammation, alveolar heterogeneity and hyperinflation, and pulmonary arterial hypertension in elastase-induced emphysema. TCAV may be a promising and personalized ventilation strategy for patients with emphysema.
Palavras-chave
alveolar heterogeneity, emphysema, hyperinflation, right ventricle function, time-controlled adjusted ventilation
Referências
  1. Abbas AE, 2013, J AM SOC ECHOCARDIOG, V26, P1170, DOI 10.1016/j.echo.2013.06.003
  2. Agoston DV, 2017, FRONT NEUROL, V8, DOI 10.3389/fneur.2017.00092
  3. Akamine R, 2007, J BIOCHEM BIOPH METH, V70, P481, DOI 10.1016/j.jbbm.2006.11.008
  4. Andrews P, 2013, CURR PROB SURG, V50, P462, DOI 10.1067/j.cpsurg.2013.08.010
  5. Archer DP, 2007, ANESTH ANALG, V105, P993, DOI 10.1213/01.ane.0000282023.42639.b2
  6. Arnal JM, 2020, HEART LUNG, V49, P427, DOI 10.1016/j.hrtlng.2019.11.001
  7. Heil LBB, 2016, ANESTH ANALG, V122, P1015, DOI 10.1213/ANE.0000000000001114
  8. de Magalhaes RF, 2021, CRIT CARE MED, V49, P140, DOI 10.1097/CCM.0000000000004675
  9. Dolinay T, 2006, PHYSIOL GENOMICS, V26, P68, DOI 10.1152/physiolgenomics.00110.2005
  10. du Sert NP, 2020, PLOS BIOL, V18, DOI 10.1371/journal.pbio.3000410
  11. Esteban A, 2013, AM J RESP CRIT CARE, V188, P220, DOI 10.1164/rccm.201212-2169OC
  12. Fullmer H M, 1974, J Oral Pathol, V3, P291, DOI 10.1111/j.1600-0714.1974.tb01724.x
  13. Gonzalez-Lopez A, 2011, AM J PHYSIOL-LUNG C, V301, pL500, DOI 10.1152/ajplung.00010.2011
  14. Habashi Nader, 2004, Curr Opin Crit Care, V10, P549, DOI 10.1097/01.ccx.0000145473.01597.13
  15. Habashi Nader M, 2005, Crit Care Med, V33, pS228, DOI 10.1097/01.CCM.0000155920.11893.37
  16. Henriques I, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00277
  17. Hsia CCW, 2010, AM J RESP CRIT CARE, V181, P394, DOI 10.1164/rccm.200809-1522ST
  18. Ito I, 2005, AM J RESP CRIT CARE, V172, P1378, DOI 10.1164/rccm.200506-953OC
  19. Jain SV, 2017, INTENS CARE MED EXP, V5, DOI 10.1186/s40635-017-0138-1
  20. Kollisch-Singule M, 2016, JAMA SURG, V151, P64, DOI 10.1001/jamasurg.2015.2683
  21. Kollisch-Singule Michaela, 2015, Intensive Care Med Exp, V3, P35, DOI 10.1186/s40635-015-0071-0
  22. Kollisch-Singule M, 2014, JAMA SURG, V149, P1138, DOI 10.1001/jamasurg.2014.1829
  23. Kollisch-Singule M, 2019, EUR RESPIR REV, V28, DOI 10.1183/16000617.0126-2018
  24. Lang RM, 2015, J AM SOC ECHOCARDIOG, V28, P1, DOI 10.1016/j.echo.2014.10.003
  25. Leatherman JW, 2004, CRIT CARE MED, V32, P1542, DOI 10.1097/01.CCM.0000130993.43076.20
  26. Lichtenstein DA, 2014, ANN INTENSIVE CARE, V4, DOI 10.1186/2110-5820-4-1
  27. MAHLER DA, 1984, AM REV RESPIR DIS, V130, P722
  28. Marini JJ, 2011, AM J RESP CRIT CARE, V184, P756, DOI 10.1164/rccm.201102-0226PP
  29. MORTOLA JP, 1983, J APPL PHYSIOL, V55, P250, DOI 10.1152/jappl.1983.55.1.250
  30. Mowery NT, 2017, SURG CLIN N AM, V97, P1381, DOI 10.1016/j.suc.2017.07.006
  31. Natalini G, 2016, RESP CARE, V61, P134, DOI 10.4187/respcare.04063
  32. Nieman GF, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.00227
  33. Nieman GF, 2020, ANN INTENSIVE CARE, V10, DOI 10.1186/s13613-019-0619-3
  34. OSWALDMAMMOSSER M, 1991, RESPIRATION, V58, P304
  35. Padilha Gisele de A, 2016, Intensive Care Med Exp, V4, P35
  36. Parameswaran H, 2006, J APPL PHYSIOL, V100, P186, DOI 10.1152/japplphysiol.00424.2005
  37. Penuelas O, 2021, MED INTENSIVA, V45, P3, DOI 10.1016/j.medin.2020.04.024
  38. Reddy Raghu M, 2007, Int J Chron Obstruct Pulmon Dis, V2, P441
  39. Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73
  40. Silva PL, 2018, CRIT CARE MED, V46, pE609, DOI 10.1097/CCM.0000000000003078
  41. Suki B, 2017, METHODS MOL BIOL, V1639, P67, DOI 10.1007/978-1-4939-7163-3_7
  42. Suki B, 2013, PHYSIOLOGY, V28, P404, DOI 10.1152/physiol.00041.2013
  43. Thibault HB, 2010, CIRC-CARDIOVASC IMAG, V3, P157, DOI 10.1161/CIRCIMAGING.109.887109
  44. Volpicelli G, 2013, J ULTRAS MED, V32, P165
  45. Wierzchon CGRS, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.01071
  46. Xirouchaki N, 2014, INTENS CARE MED, V40, P57, DOI 10.1007/s00134-013-3133-3
  47. Zhou YF, 2017, INTENS CARE MED, V43, P1648, DOI 10.1007/s00134-017-4912-z