Cri-du-Chat Syndrome: Revealing a Familial Atypical Deletion in 5p

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
KARGER
Citação
MOLECULAR SYNDROMOLOGY, v.13, n.6, p.527-536, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: Cri-du-chat syndrome is generally diagnosed when patients present a high-pitched cry at birth, microcephaly, ocular hypertelorism, and prominent nasal bridge. The karyotype is useful to confirm deletions in the short arm of chromosome 5 (5p-) greater than 10 Mb. In cases of smaller deletions, it is necessary to resort to other molecular techniques such as fluorescence in situ hybridization, multiplex ligation-dependent probe amplification (MLPA) or genomic array. Case Presentation: We report a family with an atypical deletion in 5p (mother and 2 children) and variable phenotypes compared with the literature. We applied a P064 MLPA kit to evaluate 5p- in the mother and the 2 children, and we used the Infinium CytoSNP-850K BeadChip genomic array to evaluate the siblings, an 11-year-old boy and a 13-year-old girl, to better define the 5p breakpoints. Both children presented a high-pitched cry at birth, but they did not present any of the typical physical features of 5p- syndrome. The MLPA technique with 5 probes for the 5p region revealed that the patients and their mother presented an atypical deletion with only 4 probes deleted (TERT_ex2, TERT_ex13, CLPTM1L, and IRX4). The genomic array performed in the siblings' samples revealed a 6.2-Mb terminal deletion in 5p15.33p15.32, which was likely inherited from their mother, who presented similar molecular features, seen in MLPA. Discussion: The sparing of the CTNND2 gene, which is associated with cerebral development, in both siblings may explain why these 2 patients had features such as better communication skills which most patients with larger 5p deletions usually do not present. In addition, both patients had smaller deletions than those found in patients with a typical 5p- phenotype. This report demonstrates the utility of genomic arrays as a diagnostic tool to better characterize atypical deletions in known syndromes such as 5p- syndrome, which will allow a better understanding of the genotype-phenotype correlations.
Palavras-chave
Cri-du-chat syndrome, Familial deletion, Multiplex ligation-dependent probe amplification, Array
Referências
  1. Archer Trevor, 2011, J Genet Syndr Gene Ther, V2
  2. Chehimi SN, 2020, MOL GENET GENOM MED, V8, DOI 10.1002/mgg3.957
  3. Cirillo E, 2014, BMC MED GENET, V15, DOI 10.1186/1471-2350-15-1
  4. Correa T, 2019, GENET MOL BIOL, V42, P186, DOI [10.1590/1678-4685-GMB-2018-0173, 10.1590/1678-4685-gmb-2018-0173]
  5. Duan YT, 2014, ELIFE, V3, DOI 10.7554/eLife.04390
  6. Elmakky A, 2014, EUR J MED GENET, V57, P145, DOI 10.1016/j.ejmg.2014.02.005
  7. Santo LDE, 2016, BIOMED RES INT, V2016, DOI 10.1155/2016/5467083
  8. Fang JS, 2008, CLIN GENET, V73, P585, DOI 10.1111/j.1399-0004.2008.00995.x
  9. Hofmeister W, 2015, J MED GENET, V52, P111, DOI 10.1136/jmedgenet-2014-102757
  10. Liu DG, 2017, FRONT GENET, V8, DOI 10.3389/fgene.2017.00105
  11. Mainardi PC, 2006, EUR J MED GENET, V49, P363, DOI 10.1016/j.ejmg.2005.12.004
  12. Marignier S, 2012, EUR J MED GENET, V55, P433, DOI 10.1016/j.ejmg.2012.03.008
  13. Marinescu RC, 2000, AM J MED GENET, V94, P153, DOI 10.1002/1096-8628(20000911)94:2<153::AID-AJMG8>3.0.CO;2-#
  14. Medina M, 2000, GENOMICS, V63, P157, DOI 10.1006/geno.1999.6090
  15. Nakagami Y, 2015, EPILEPTIC DISORD, V17, P485, DOI 10.1684/epd.2015.0780
  16. Naumova OY, 2018, CLIN CASE REP, V6, P14, DOI 10.1002/ccr3.1274
  17. Nguyen JM, 2015, AM J MED GENET C, V169, P224, DOI 10.1002/ajmg.c.31444
  18. NIEBUHR E, 1978, HUM GENET, V44, P227, DOI 10.1007/BF00394291
  19. Riggs ER, 2020, GENET MED, V22, P245, DOI 10.1038/s41436-019-0686-8
  20. Sardina JM, 2014, AM J MED GENET A, V164, P1761, DOI 10.1002/ajmg.a.36494
  21. Su JS, 2019, MOL CYTOGENET, V12, DOI 10.1186/s13039-019-0462-0
  22. Vallespin E, 2013, AM J MED GENET A, V161, P1950, DOI 10.1002/ajmg.a.35960
  23. Wang K, 2009, NATURE, V459, P528, DOI 10.1038/nature07999
  24. Wu QF, 2005, EUR J HUM GENET, V13, P475, DOI 10.1038/sj.ejhg.5201345
  25. Yokoyama E, 2018, MOL CYTOGENET, V11, DOI 10.1186/s13039-018-0374-4
  26. Zanardo EA, 2017, CLINICS, V72, P526, DOI 10.6061/clinics/2017(09)02
  27. Zhang XX, 2005, AM J HUM GENET, V76, P312, DOI 10.1086/427762