Monocyte-to-HDL ratio and non-HDL cholesterol were predictors of septic shock in newborns

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER ESPANA
Citação
CLINICS, v.77, article ID 100111, 8p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The association between lipoprotein levels and late-onset neonatal sepsis has shown controversial results. The aims are to assess lipid profile, cytokines, and Monocyte-to-HDL (M/H) ratio as diagnostic and prog-nostic markers for late-onset neonatal sepsis.Methods: This prospective study included 49 septic neonates and 17 controls. Cholesterol (CT), Triglyceride (TG), Very-Low-Density (VLDLc), Low-Density (LDLc), and High-Density Lipoproteins (HDLc) were measured at admis-sion (D0) and on days 3, 7 and 10 to evaluate septic shock outcomes. Cytokines and monocytes were evaluated by flow cytometry.Results: Septic newborns showed higher IL-6 and IL-8 at D0 and CT levels on D7 and on D10, which also presented higher TG, VLDLc and non-HDL cholesterol concentrations than controls. The septic shock group (n = 22) revealed a higher number of male subjects, CRP, IL-6, IL-8 and IL-10 levels, while lower TG, HDLc, monocyte numbers and M/H ratio at admission compared to the non-shock group (n = 27). M/H ratio and non-HDL choles-terol on D0 were risk factors for septic shock (OR = 0.70, 0.49-0.99; OR = 0.96, 0.92-0.99, respectively). Decreasing levels from D0 to D3 of CT (OR = 0.96, 0.93-0.99), VLDLc (OR = 0.91, 0.85-0.98), and non-HDL cholesterol (OR = 0.92, 0.87-0.98) were also predictors of septic shock.Conclusions: Lower M/H ratios and non-HDL cholesterol at admission and decreasing levels of cholesterol, VLDLc and non-HDL cholesterol during a hospital stay are associated with the development of septic shock in newborns with late-onset neonatal sepsis.
Palavras-chave
Late-onset neonatal sepsis, Septic shock, Lipoproteins, Monocyte-to-HDL ratio
Referências
  1. Avci A, 2021, AM J EMERG MED, V46, P212, DOI 10.1016/j.ajem.2020.07.026
  2. Barlage S, 2009, INTENS CARE MED, V35, P1877, DOI 10.1007/s00134-009-1609-y
  3. Canpolat U, 2016, CLIN APPL THROMB-HEM, V22, P476, DOI 10.1177/1076029615594002
  4. Carpentier YA, 2002, CURR OPIN CLIN NUTR, V5, P153, DOI 10.1097/00075197-200203000-00006
  5. Cetinkaya A, 2014, THER CLIN RISK MANAG, V10, P147, DOI 10.2147/TCRM.S57791
  6. Chien JY, 2005, CRIT CARE MED, V33, P1688, DOI 10.1097/01.CCM.0000171183.79525.6B
  7. Chirico G, 2011, PEDIATRIC REP, V3, P1, DOI 10.4081/pr.2011.e1
  8. Cirstea M, 2017, J CRIT CARE, V38, P289, DOI 10.1016/j.jcrc.2016.11.041
  9. Contreras-Duarte S, 2014, REV CHIL INFECTOL, V31, P34, DOI 10.4067/S0716-10182014000100005
  10. Deshpande G, 2014, J PEDIATR GASTR NUTR, V58, P177, DOI 10.1097/MPG.0000000000000174
  11. Deshpande GC, 2020, JPEN-PARENTER ENTER, V44, pS45, DOI 10.1002/jpen.1759
  12. Fleischmann C, 2021, ARCH DIS CHILD, V106, P745, DOI 10.1136/archdischild-2020-320217
  13. Ganjali S, 2018, J CELL PHYSIOL, V233, P9237, DOI 10.1002/jcp.27028
  14. Goldstein Brahm, 2005, Pediatr Crit Care Med, V6, P2
  15. Grion CMC, 2010, EUR J CLIN INVEST, V40, P330, DOI 10.1111/j.1365-2362.2010.02269.x
  16. James SL, 2018, LANCET, V392, P1789, DOI [10.1016/s0140-6736(18)32203-7, 10.1016/S0140-6736(18)32203-7, 10.1016/s0140-6736(18)32279-7]
  17. Johnsen SH, 2005, STROKE, V36, P715, DOI 10.1161/01.STR.0000158909.07634.83
  18. Kanbay M, 2014, INT UROL NEPHROL, V46, P1619, DOI 10.1007/s11255-014-0730-1
  19. Khovidhunkit W, 2000, J INFECT DIS, V181, pS462, DOI 10.1086/315611
  20. Koliski Adriana, 2005, J. Pediatr. (Rio J.), V81, P287, DOI 10.1590/S0021-75572005000500005
  21. Lee SH, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/789298
  22. Lekkou A, 2014, J CRIT CARE, V29, P723, DOI 10.1016/j.jcrc.2014.04.018
  23. Liu SQ, 2021, BURNS TRAUMA, V9, DOI 10.1093/burnst/tkaa040
  24. Machado RM, 2010, J NUTR, V140, P1127, DOI 10.3945/jn.109.117937
  25. Miles EA, 2015, WORLD REV NUTR DIET, V112, P17, DOI 10.1159/000365426
  26. Murch O, 2007, INTENS CARE MED, V33, P13, DOI 10.1007/s00134-006-0432-y
  27. Onat T, 2021, BIOL TRACE ELEM RES, V199, P1306, DOI 10.1007/s12011-020-02499-9
  28. Pirillo A, 2015, HANDB EXP PHARMACOL, V224, P483, DOI 10.1007/978-3-319-09665-0_15
  29. Raman M, 2017, NUTRIENTS, V9, DOI 10.3390/nu9040388
  30. Rashwan NI, 2019, PEDIATR NEONATOL, V60, P149, DOI 10.1016/j.pedneo.2018.05.001
  31. Sweeney B, 2005, PEDIATR SURG INT, V21, P335, DOI 10.1007/s00383-005-1385-x
  32. Sweeney B, 2001, PEDIATR SURG INT, V17, P254, DOI 10.1007/s003830100589
  33. TALLIS GA, 1994, CLIN CHIM ACTA, V228, P171, DOI 10.1016/0009-8981(94)90287-9
  34. Tanaka S, 2020, CRIT CARE, V24, DOI 10.1186/s13054-020-02860-3
  35. Tran-Dinh A, 2013, BRIT J PHARMACOL, V169, P493, DOI 10.1111/bph.12174
  36. van Leeuwen HJ, 2003, CRIT CARE MED, V31, P1359, DOI 10.1097/01.CCM.0000059724.08290.51
  37. Weinberg GA, 2016, REMINGTON KLEINS INF, V8th, P1132
  38. Weiss SL, 2020, PEDIATR CRIT CARE ME, V21, pE52, DOI [10.1097/PCC.0000000000002198, 10.1007/s00134-019-05878-6]
  39. Wendel M, 2007, INTENS CARE MED, V33, P25, DOI 10.1007/s00134-006-0433-x
  40. Wu AH, 2004, SHOCK, V21, P210, DOI 10.1097/01.shk.0000111661.09279.82
  41. Yildiz B, 2009, SCAND J INFECT DIS, V41, P263, DOI 10.1080/00365540902767056