Imagawa-Matsumoto syndrome: SUZ12-related overgrowth disorder

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
Citação
CLINICAL GENETICS, v.103, n.4, p.383-391, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The SUZ12 gene encodes a subunit of polycomb repressive complex 2 (PRC2) that is essential for development by silencing the expression of multiple genes. Germline heterozygous variants in SUZ12 have been found in Imagawa-Matsumoto syndrome (IMMAS) characterized by overgrowth and multiple dysmorphic features. Similarly, both EZH2 and EED also encode a subunit of PRC2 each and their pathogenic variants cause Weaver syndrome and Cohen-Gibson syndrome, respectively. Clinical manifestations of these syndromes significantly overlap, although their different prevalence rates have recently been noted: generalized overgrowth, intellectual disability, scoliosis, and excessive loose skin appear to be less prevalent in IMMAS than in the other two syndromes. We could not determine any apparent genotype-phenotype correlation in IMMAS. The phenotype of neurofibromatosis type 1 arising from NF1 deletion was also shown to be modified by the deletion of SUZ12, 560 kb away. This review deepens our understanding of the clinical and genetic characteristics of IMMAS together with other overgrowth syndromes related to PRC2. We also report on a novel IMMAS patient carrying a splicing variant (c.1023+1G>C) in SUZ12. This patient had a milder phenotype than other previously reported IMMAS cases, with no macrocephaly or overgrowth phenotypes, highlighting the clinical variation in IMMAS.
Palavras-chave
Imagawa-Matsumoto syndrome, overgrowth syndrome, polycomb repressive complex 2, SUZ12
Referências
  1. Cao R, 2002, SCIENCE, V298, P1039, DOI 10.1126/science.1076997
  2. Chammas P, 2020, BRIT J CANCER, V122, P315, DOI 10.1038/s41416-019-0615-2
  3. Chen SM, 2018, MOL CELL, V69, P840, DOI 10.1016/j.molcel.2018.01.039
  4. Choufani S, 2020, AM J HUM GENET, V106, P596, DOI 10.1016/j.ajhg.2020.03.008
  5. Cohen ASA, 2016, J HUM GENET, V61, P831, DOI 10.1038/jhg.2016.51
  6. Cohen ASA, 2016, HUM MUTAT, V37, P301, DOI 10.1002/humu.22946
  7. Cohen ASA, 2015, J HUM GENET, V60, P339, DOI 10.1038/jhg.2015.26
  8. Cyrus S, 2019, AM J MED GENET C, V181, P519, DOI 10.1002/ajmg.c.31754
  9. Cyrus SS, 2019, AM J MED GENET C, V181, P532, DOI 10.1002/ajmg.c.31748
  10. Deb G, 2014, MOL CANCER RES, V12, P639, DOI 10.1158/1541-7786.MCR-13-0546
  11. Douglas J, 2007, NAT GENET, V39, P963, DOI 10.1038/ng2083
  12. Gentile C, 2020, BIOESSAYS, V42, DOI 10.1002/bies.201900249
  13. Gibson WT, 2012, AM J HUM GENET, V90, P110, DOI 10.1016/j.ajhg.2011.11.018
  14. Griffiths S, 2019, AM J MED GENET A, V179, P588, DOI 10.1002/ajmg.a.61066
  15. Guo YR, 2021, TRENDS GENET, V37, P547, DOI 10.1016/j.tig.2020.12.006
  16. Hojfeldt JW, 2019, MOL CELL, V76, P423, DOI 10.1016/j.molcel.2019.07.031
  17. Imagawa E, 2018, CLIN GENET, V94, P461, DOI 10.1111/cge.13415
  18. Imagawa E, 2017, HUM MUTAT, V38, P637, DOI 10.1002/humu.23200
  19. Kasinath V, 2021, SCIENCE, V371, P362, DOI 10.1126/science.abc3393
  20. Kehrer-Sawatzki H, 2021, GENES-BASEL, V12, DOI 10.3390/genes12101639
  21. Kehrer-Sawatzki H, 2020, CHILD NERV SYST, V36, P2297, DOI 10.1007/s00381-020-04717-0
  22. Kehrer-Sawatzki H, 2017, HUM GENET, V136, P349, DOI 10.1007/s00439-017-1766-y
  23. Kirmizis A, 2004, GENE DEV, V18, P1592, DOI 10.1101/gad.1200204
  24. Kouznetsova VL, 2019, PROTEIN SCI, V28, P1387, DOI 10.1002/pro.3647
  25. Kuzmichev A, 2005, P NATL ACAD SCI USA, V102, P1859, DOI 10.1073/pnas.0409875102
  26. Lindeboom RGH, 2016, NAT GENET, V48, P1112, DOI 10.1038/ng.3664
  27. Liu XL, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.894585
  28. Mautner VF, 2010, J MED GENET, V47, P623, DOI 10.1136/jmg.2009.075937
  29. Miro X, 2009, DIS MODEL MECH, V2, P412, DOI 10.1242/dmm.001602
  30. Mirzaei S, 2022, J HEMATOL ONCOL, V15, DOI 10.1186/s13045-022-01235-1
  31. Ning X, 2016, CLIN GENET, V89, P351, DOI 10.1111/cge.12632
  32. Parreno V, 2022, CELL RES, V32, P231, DOI 10.1038/s41422-021-00606-6
  33. Pasini D, 2004, EMBO J, V23, P4061, DOI 10.1038/sj.emboj.7600402
  34. Pasini D, 2007, MOL CELL BIOL, V27, P3769, DOI 10.1128/MCB.01432-06
  35. Pasmant E, 2010, HUM MUTAT, V31, pE1506, DOI 10.1002/humu.21271
  36. Rai AN, 2013, MOL CELL BIOL, V33, P4844, DOI 10.1128/MCB.00307-13
  37. Sbidian E, 2012, ORPHANET J RARE DIS, V7, DOI 10.1186/1750-1172-7-62
  38. Soucy EA, 2013, J CHILD NEUROL, V28, P303, DOI 10.1177/0883073812446310
  39. Sparmann A, 2006, NAT REV CANCER, V6, P846, DOI 10.1038/nrc1991
  40. Spellicy CJ, 2019, J HUM GENET, V64, P561, DOI 10.1038/s10038-019-0585-5
  41. Squazzo SL, 2006, GENOME RES, V16, P890, DOI 10.1101/gr.5306606
  42. Szudek J, 2000, J MED GENET, V37, P933, DOI 10.1136/jmg.37.12.933
  43. Tatton-Brown K, 2013, AM J MED GENET A, V161, P2972, DOI 10.1002/ajmg.a.36229
  44. Tatton-Brown K, 2011, ONCOTARGET, V2, P1127, DOI 10.18632/oncotarget.385
  45. Turkkahraman D, 2021, AM J MED GENET A, V185, P2234, DOI 10.1002/ajmg.a.62189
  46. Usemann J, 2016, AM J MED GENET A, V170, P1274, DOI 10.1002/ajmg.a.37562
  47. Vire E, 2006, NATURE, V439, P871, DOI 10.1038/nature04431
  48. Visser R, 2009, AM J MED GENET A, V149A, P806, DOI 10.1002/ajmg.a.32694
  49. WEAVER DD, 1974, J PEDIATR-US, V84, P547, DOI 10.1016/S0022-3476(74)80675-X