Effects of dynamic, isometric and combined resistance training on blood pressure and its mechanisms in hypertensive men

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGERNATURE
Autores
FECCHIO, Rafael Y.
SOUSA, Julio C. S. de
OLIVEIRA-SILVA, Laura
SILVA JUNIOR, Natan D. da
LOW, David A.
FORJAZ, Claudia L. M.
Citação
HYPERTENSION RESEARCH, v.46, n.4, p.1031-1043, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Although dynamic resistance training (DRT) and isometric handgrip training (IHT) may decrease blood pressure (BP) in hypertensives, the effects of these types of training have not been directly compared, and a possible additive effect of combining IHT to DRT (combined resistance training & mdash;CRT), has not been investigated. Thus, this study compared the effects of DRT, IHT and CRT on BP, systemic hemodynamics, vascular function, and cardiovascular autonomic modulation. Sixty-two middle-aged men with treated hypertension were randomly allocated among four groups: DRT (8 exercises, 50% of 1RM, 3 sets until moderate fatigue), IHT (30% of MVC, 4 sets of 2 min), CRT (DRT + IHT) and control (CON - stretching). In all groups, the interventions were administered 3 times/week for 10 weeks. Pre-and post-interventions, BP, systemic hemodynamics, vascular function and cardiovascular autonomic modulation were assessed. ANOVAs and ANCOVAs adjusted for pre-intervention values were employed for analysis. Systolic BP decreased similarly with DRT and CRT (125 +/- 11 vs. 119 +/- 12 and 128 +/- 12 vs. 119 +/- 12 mmHg, respectively; P < 0.05), while peak blood flow during reactive hyperaemia (a marker of microvascular function) increased similarly in these groups (774 +/- 377 vs. 1067 +/- 461 and 654 +/- 321 vs. 954 +/- 464 mL/min, respectively, P < 0.05). DRT and CRT did not change systemic hemodynamics, flow mediated dilation, and cardiovascular autonomic modulation. In addition, none of the variables were changed by IHT. In conclusion, DRT, but not IHT, improved BP and microvascular function in treated hypertensive men. CRT did not have any additional effect in comparison with DRT alone.
Palavras-chave
Hypertension, Strength training, Vascular function, Autonomic modulation, Hemodynamics
Referências
  1. Anderson TJ, 2011, CIRCULATION, V123, P163, DOI 10.1161/CIRCULATIONAHA.110.953653
  2. Almeida JPAD, 2021, HYPERTENS RES, V44, P1205, DOI 10.1038/s41440-021-00681-7
  3. ASMUSSEN E, 1981, CIRC RES, V48, P3
  4. Beck DT, 2014, J HUM HYPERTENS, V28, P303, DOI 10.1038/jhh.2013.109
  5. BOTTINI PB, 1992, J CLIN PHARMACOL, V32, P614, DOI 10.1002/j.1552-4604.1992.tb05770.x
  6. Brouwers S, 2021, LANCET, V398, P249, DOI 10.1016/S0140-6736(21)00221-X
  7. Camm AJ, 1996, CIRCULATION, V93, P1043
  8. Carlson DJ, 2016, MEDICINE, V95, DOI 10.1097/MD.0000000000005791
  9. Queiroz ACC, 2017, INT J SPORTS MED, V38, P270, DOI 10.1055/s-0042-123044
  10. COLLIER CR, 1956, J APPL PHYSIOL, V9, P25, DOI 10.1152/jappl.1956.9.1.25
  11. Cornelissen VA, 2013, J AM HEART ASSOC, V2, DOI 10.1161/JAHA.112.004473
  12. Coylewright M, 2008, HYPERTENSION, V51, P952, DOI 10.1161/HYPERTENSIONAHA.107.105742
  13. Craig CL, 2003, MED SCI SPORT EXER, V35, P1381, DOI 10.1249/01.MSS.0000078924.61453.FB
  14. Green DJ, 2017, PHYSIOL REV, V97, P495, DOI 10.1152/physrev.00014.2016
  15. Hanssen H, 2022, EUR J PREV CARDIOL, V29, P205, DOI 10.1093/eurjpc/zwaa141
  16. Kraemer WJ, 2002, MED SCI SPORT EXER, V34, P364, DOI 10.1097/00005768-200202000-00027
  17. Lawes CMM, 2008, LANCET, V371, P1513, DOI 10.1016/S0140-6736(08)60655-8
  18. Limberg JK, 2020, AM J PHYSIOL-HEART C, V318, pH301, DOI 10.1152/ajpheart.00649.2019
  19. Lopez-Valenciano A, 2019, J HYPERTENS, V37, P1320, DOI 10.1097/HJH.0000000000002022
  20. MacDonald HV, 2016, J AM HEART ASSOC, V5, DOI 10.1161/JAHA.116.003231
  21. Maher CG, 2003, PHYS THER, V83, P713, DOI 10.1093/ptj/83.8.713
  22. Malachias Mvb, 2016, Arq Bras Cardiol, V107, P1, DOI 10.5935/abc.20160151
  23. Maud PJ, PHYSL ASSESSMENT HUM
  24. McGowan CL, 2006, EUR J APPL PHYSIOL, V98, P355, DOI 10.1007/s00421-006-0282-x
  25. Millar PJ, 2009, CURR HYPERTENS REV, V5, P54, DOI 10.2174/157340209787314351
  26. Mohrman DE, 2013, CARDIOVASCULAR PHYSL
  27. Naci H, 2019, BRIT J SPORT MED, V53, P859, DOI 10.1136/bjsports-2018-099921
  28. Oliver-Martinez PA, 2020, J HYPERTENS, V38, P1909, DOI 10.1097/HJH.0000000000002459
  29. Queiroz ACC, 2015, SCAND J MED SCI SPOR, V25, P486, DOI 10.1111/sms.12280
  30. Rahimi K, 2021, LANCET, V397, P1625, DOI 10.1016/S0140-6736(21)00590-0
  31. Rakobowchuk M, 2005, J APPL PHYSIOL, V98, P2185, DOI 10.1152/japplphysiol.01290.2004
  32. Rezk CC, 2006, EUR J APPL PHYSIOL, V98, P105, DOI 10.1007/s00421-006-0257-y
  33. ROBBE HWJ, 1987, HYPERTENSION, V10, P538, DOI 10.1161/01.HYP.10.5.538
  34. Sarelius I, 2010, ACTA PHYSIOL, V199, P349, DOI 10.1111/j.1748-1716.2010.02129.x
  35. Barroso WKS, 2021, ARQ BRAS CARDIOL, V116, P516, DOI 10.36660/abc.20201238
  36. Shahin Y, 2011, ATHEROSCLEROSIS, V216, P7, DOI 10.1016/j.atherosclerosis.2011.02.044
  37. Sharman JE, 2015, J HUM HYPERTENS, V29, P351, DOI 10.1038/jhh.2014.84
  38. Taylor AC, 2003, MED SCI SPORT EXER, V35, P251, DOI 10.1249/01.MSS.0000048725.15026.B5
  39. Thijssen DHJ, 2019, EUR HEART J, V40, P2534, DOI 10.1093/eurheartj/ehz350
  40. Westcott WL, 2012, CURR SPORT MED REP, V11, P209, DOI 10.1249/JSR.0b013e31825dabb8
  41. Whelton PK, 2018, HYPERTENSION, V71, pE13, DOI [10.1161/HYP.0000000000000065, 10.1161/HYP.0000000000000066]
  42. Williams B, 2018, J HYPERTENS, V36, P2284, DOI [10.1097/HJH.0000000000001961, 10.1097/HJH.0000000000002026]