Prefrontal transcranial direct current stimulation over the right prefrontal cortex reduces proactive and reactive control performance towards emotional material in healthy individuals

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
VANDERHASSELT, Marie-Anne
SANCHEZ-LOPEZ, Alvaro
PULOPULOS, Matias
RAZZA, Lais B.
SMET, Stefanie De
BAEKEN, Chris
RAEDT, Rudi De
ALLAERT, Jens
Citação
INTERNATIONAL JOURNAL OF CLINICAL AND HEALTH PSYCHOLOGY, v.23, n.4, article ID 100384, 9p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The prefrontal cortex plays a crucial role in cognitive processes, both during anticipatory and reactive modes of cognitive control. Transcranial Direct Current Stimulation (tDCS) can modulate these cognitive resources. How-ever, there is a lack of research exploring the impact of tDCS on emotional material processing in the prefrontal cortex, particularly in regard to proactive and reactive modes of cognitive control. In this study, 35 healthy volun-teers underwent both real and sham tDCS applied to the right prefrontal cortex in a counterbalanced order, and then completed the Cued Emotion Control Task (CECT). Pupil dilation, a measure of cognitive resource allocation, and behavioral outcomes, such as reaction time and accuracy, were collected. The results indicate that, as com-pared to sham stimulation, active right-sided tDCS reduced performance and resource allocation in both proactive and reactive modes of cognitive control. These findings highlight the importance of further research on the effects of tDCS applied to the right prefrontal cortex on cognitive engagement, particularly for clinical trials utilizing the present electrode montage in combination with cognitive interventions.
Palavras-chave
Neuromodulation, Right prefrontal cortex, Pupil dilation, Proactive and reactive cognitive control, Anticipation
Referências
  1. Allaert J, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0218327
  2. [Anonymous], 2012, MATLAB STAT TOOLB RE
  3. Antal A, 2017, CLIN NEUROPHYSIOL, V128, P1774, DOI 10.1016/j.clinph.2017.06.001
  4. Bates D, 2015, J STAT SOFTW, V67, P1, DOI 10.18637/jss.v067.i01
  5. Boudewyn MA, 2020, NEUROPSYCHOPHARMACOL, V45, P1877, DOI 10.1038/s41386-020-0750-8
  6. Braver TS, 2012, TRENDS COGN SCI, V16, P106, DOI 10.1016/j.tics.2011.12.010
  7. Braver TS, 2009, P NATL ACAD SCI USA, V106, P7351, DOI 10.1073/pnas.0808187106
  8. Brunoni AR, 2014, BRAIN COGNITION, V86, P1, DOI 10.1016/j.bandc.2014.01.008
  9. De Raedt R, 2016, CLIN PSYCHOL REV, V45, P45, DOI 10.1016/j.cpr.2016.03.005
  10. De Smet S, 2021, PROG NEURO-PSYCHOPH, V109, DOI 10.1016/j.pnpbp.2021.110261
  11. Dedoncker J, 2021, BIOL PSYCHOL, V158, DOI 10.1016/j.biopsycho.2020.107991
  12. Dedoncker J, 2016, BRAIN STIMUL, V9, P501, DOI 10.1016/j.brs.2016.04.006
  13. Dixon P, 2008, J MEM LANG, V59, P447, DOI 10.1016/j.jml.2007.11.004
  14. Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146
  15. Feeser M, 2014, BRAIN STIMUL, V7, P105, DOI 10.1016/j.brs.2013.08.006
  16. Fox J., 2011, R COMPANION APPL REG
  17. Fregni F, 2021, INT J NEUROPSYCHOPH, V24, P256, DOI 10.1093/ijnp/pyaa051
  18. Friehs MA, 2021, NEUROSCI BIOBEHAV R, V128, P749, DOI 10.1016/j.neubiorev.2021.07.013
  19. Goeleven E, 2008, COGNITION EMOTION, V22, P1094, DOI 10.1080/02699930701626582
  20. Gomez-Ariza C. J., 2017, BRAIN STIMUL, P10, DOI [10.1016/j.brs.2017.01.059, DOI 10.1016/J.BRS.2017.01.059]
  21. Gomez-Ariza CJ, 2017, FRONT NEUROSCI-SWITZ, V11, P1, DOI 10.3389/fnins.2017.00282
  22. Huang SH, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0176102
  23. Kalisch R, 2009, NEUROSCI BIOBEHAV R, V33, P1215, DOI 10.1016/j.neubiorev.2009.06.003
  24. Klem G H, 1999, Electroencephalogr Clin Neurophysiol Suppl, V52, P3
  25. Kuznetsova A, 2017, J STAT SOFTW, V82, P1, DOI 10.18637/jss.v082.i13
  26. Leffa DT, 2022, JAMA PSYCHIAT, V79, P847, DOI 10.1001/jamapsychiatry.2022.2055
  27. Leys C, 2013, J EXP SOC PSYCHOL, V49, P764, DOI 10.1016/j.jesp.2013.03.013
  28. Lo S, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01171
  29. Lundqvist D., 1998, KAROLINSKA DIRECTED, V22, P1094, DOI [DOI 10.1037/T27732-000, 10.1037/t27732-000]
  30. Maris E, 2007, J NEUROSCI METH, V164, P177, DOI 10.1016/j.jneumeth.2007.03.024
  31. MCCORMACK HM, 1988, PSYCHOL MED, V18, P1007, DOI 10.1017/S0033291700009934
  32. Miniussi C., 2013, CLIN NEUROPHYSIOL, V124, pe51, DOI [10.1016/j.clinph.2013.04.057, DOI 10.1016/J.CLINPH.2013.04.057]
  33. Nitsche MA, 2000, J PHYSIOL-LONDON, V527, P633, DOI 10.1111/j.1469-7793.2000.t01-1-00633.x
  34. Nitsche MA, 2008, BRAIN STIMUL, V1, P206, DOI 10.1016/j.brs.2008.06.004
  35. Pulopulos MM, 2022, SOC COGN AFFECT NEUR, V17, P109, DOI 10.1093/scan/nsaa082
  36. Puonti O, 2020, NEUROIMAGE, V219, DOI 10.1016/j.neuroimage.2020.117044
  37. R Development Core Team, 2008, R LANG ENV STAT COMP
  38. Rondeel EWM, 2015, FRONT HUM NEUROSCI, V9, DOI 10.3389/fnhum.2015.00494
  39. Sanchez A, 2016, COGN AFFECT BEHAV NE, V16, P1027, DOI 10.3758/s13415-016-0450-3
  40. Sheehan DV, 1998, J CLIN PSYCHIAT, V59, P34, DOI 10.4088/JCP.09m05305whi
  41. Sjak-Shie E. E, 2022, PHYSIODATA TOOLBOX
  42. Soleimani G, 2022, medRxiv, DOI [10.1101/2022.12.01.22282886, DOI 10.1101/2022.12.01.22282886]
  43. Van der Meer E, 2010, PSYCHOPHYSIOLOGY, V47, P158, DOI 10.1111/j.1469-8986.2009.00884.x
  44. van der Wel P, 2018, PSYCHON B REV, V25, P2005, DOI 10.3758/s13423-018-1432-y
  45. Vanderhasselt MA, 2017, BIOL PSYCHOL, V123, P111, DOI 10.1016/j.biopsycho.2016.12.006
  46. Vanderhasselt MA, 2014, J ABNORM PSYCHOL, V123, P68, DOI 10.1037/a0035816
  47. Vanderhasselt MA, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00207
  48. Vanderhasselt MA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062219
  49. Vanderhasselt MA, 2009, J PSYCHIATR NEUROSCI, V34, P119
  50. Weller S, 2020, BRAIN STIMUL, V13, P1358, DOI 10.1016/j.brs.2020.07.006
  51. Zenon A, 2019, P ROY SOC B-BIOL SCI, V286, DOI 10.1098/rspb.2019.1593