Motor corticospinal excitability abnormalities differ between distinct chronic low back pain syndromes

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Citação
NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, v.53, n.3, article ID 102853, 10p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: It is not known whether cortical plastic changes reported in low-back pain (LBP) are present in all etiologies of LBP. Here we report on the assessment of patients with three LBP con-ditions: non-specific-LBP (ns-LBP), failed back surgery syndrome (FBSS), and sciatica (Sc).Methods: Patients underwent a standardized assessment of clinical pain, conditioned pain mod-ulation (CPM), and measures of motor evoked potential (MEPs)-based motor corticospinal excit-ability (CE) by transcranial magnetic stimulation, including short interval intracortical inhibition (SICI), and intracortical facilitation (ICF). Comparisons were also made with normative data from sex-and age-matched healthy volunteers.Results: 60 patients (42 women, 55.1 +/- 9.1 years old) with LBP were included (20 in each group). Pain intensity was higher in patients with neuropathic pain [FBSS (6.8 +/- 1.3), and Sc (6.4 +/- 1.4)] than in those with ns-LBP (4.7 +/- 1.0, P<0.001). The same was shown for pain interference (5.9 +/- 2.0, 5.9 +/- 1.8, 3.2 +/- 1.9, P<0.001), disability (16.4 +/- 3.3, 16.3 +/- 4.3, 10.4 +/- 4.3, P<0.001), and catastrophism (31.1 +/- 12.3, 33.0 +/- 10.4, 17.4 +/- 10.7, P<0.001) scores for FBSS, Sc, and ns-LBP groups, respectively. Patients with neuropathic pain (FBSS, Sc) had lower CPM (-14.8 +/- 1.9,-14.1 +/- 16.7, respectively) compared to ns-LBP (-25.4 +/- 16.6; P<0.02). 80.0% of the FBSS group had defective ICF compared to the other two groups (52.5% for ns-LBP, P=0.025 and 52.5% for Sc, P=0.046). MEPs (140%-rest motor threshold) were low in 50.0% of patients in the FBSS group com-pared to 20.0% of ns-LBP (P=0.018) and 15.0% of Sc (P=0.001) groups. Higher MEPs were corre-lated with mood scores (r=0.489), and with lower neuropathic pain symptom scores(r=-0.415) in FBSS.Conclusions: Different types of LBP were associated with different clinical, CPM and CE profiles, which were not uniquely related to the presence of neuropathic pain. These results highlight the need to further characterize patients with LBP in psychophysics and cortical neurophysiology studies.(c) 2023 The Author(s).
Palavras-chave
Motor corticospinal excitability, Low back pain, Failed back syndrome surgery, Neuropathic pain, Transcranial magnetic stimulation, Sciatica, Nonspecific low back pain, Chronic pain
Referências
  1. Atlas SJ, 1996, SPINE, V21, P2885, DOI 10.1097/00007632-199612150-00020
  2. Baliki MN, 2012, NAT NEUROSCI, V15, P1117, DOI 10.1038/nn.3153
  3. Barbosa LM, 2022, BRAIN COMMUN, V4, DOI 10.1093/braincomms/fcac090
  4. Bernstein IA, 2017, BMJ-BRIT MED J, V356, DOI 10.1136/bmj.i6748
  5. Bogduk N, 2009, PAIN, V147, P17, DOI 10.1016/j.pain.2009.08.020
  6. Bouhassira D, 2005, PAIN, V114, P29, DOI 10.1016/j.pain.2004.12.010
  7. Bouhassira D, 2021, PAIN, V162, P1038, DOI 10.1097/j.pain.0000000000002130
  8. Buckalew N, 2010, PAIN MED, V11, P1183, DOI 10.1111/j.1526-4637.2010.00899.x
  9. Campbell WW, 2005, DEJONGS NEUROLOGIC E
  10. Castro Martha Moreira Cavalcante, 2006, Rev. Bras. Anestesiol., V56, P470, DOI 10.1590/S0034-70942006000500005
  11. Ceko M, 2015, HUM BRAIN MAPP, V36, P2075, DOI 10.1002/hbm.22757
  12. Clark BC, 2011, BMC MUSCULOSKEL DIS, V12, DOI 10.1186/1471-2474-12-170
  13. Cohen J, 1988, STAT POWER ANAL BEHA
  14. Crawford B, 2008, HEALTH QUAL LIFE OUT, V6, DOI 10.1186/1477-7525-6-62
  15. Cueva AS, 2016, NEUROPHYSIOL CLIN, V46, P43, DOI 10.1016/j.neucli.2015.12.003
  16. da Silva VA, 2018, NEUROPHYSIOL CLIN, V48, P287, DOI 10.1016/j.neucli.2018.06.078
  17. Darmani G, 2019, BRAIN STIMUL, V12, P829, DOI 10.1016/j.brs.2019.02.021
  18. de Abreu AM, 2008, CAD SAUDE PUBLICA, V24, P615, DOI 10.1590/S0102-311X2008000300015
  19. de Andrade DC, 2011, HEALTH QUAL LIFE OUT, V9, DOI 10.1186/1477-7525-9-107
  20. de Andrade DC, 2010, PAIN, V150, P485, DOI 10.1016/j.pain.2010.06.001
  21. Defrin R, 2014, PAIN, V155, P2551, DOI 10.1016/j.pain.2014.09.015
  22. Di Lazzaro V, 2006, J NEUROPHYSIOL, V96, P1765, DOI 10.1152/jn.00360.2006
  23. FALCONER MA, 1948, J NEUROL NEUROSUR PS, V11, P13, DOI 10.1136/jnnp.11.1.13
  24. Farina S, 2001, NEUROSCI LETT, V314, P97, DOI 10.1016/S0304-3940(01)02297-2
  25. Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146
  26. Ferreira KA, 2011, SUPPORT CARE CANCER, V19, P505, DOI 10.1007/s00520-010-0844-7
  27. Finnerup NB, 2016, PAIN, V157, P1599, DOI 10.1097/j.pain.0000000000000492
  28. Fitzcharles MA, 2021, LANCET, V397, P2098, DOI 10.1016/S0140-6736(21)00392-5
  29. Fritz HC, 2016, J PAIN, V17, P111, DOI 10.1016/j.jpain.2015.10.003
  30. Galhardoni R, 2019, CEPHALALGIA, V39, P219, DOI 10.1177/0333102418780426
  31. Goubert D, 2017, PAIN PHYSICIAN, V20, P307
  32. HALLETT M, 1993, NEUROLOGY, V43, P2723, DOI 10.1212/WNL.43.12.2723
  33. Hashmi JA, 2013, BRAIN, V136, P2751, DOI 10.1093/brain/awt211
  34. Hoy D, 2014, ANN RHEUM DIS, V73, P968, DOI 10.1136/annrheumdis-2013-204428
  35. Imamura M, 2013, SPINE, V38, P2098, DOI 10.1097/01.brs.0000435027.50317.d7
  36. Jenkins LC, 2023, PAIN, V164, P14, DOI 10.1097/j.pain.0000000000002684
  37. Kaziyama HH, 2020, EUR J PAIN, V24, P1635, DOI 10.1002/ejp.1620
  38. Knezevic NN, 2021, LANCET, V398, P78, DOI 10.1016/S0140-6736(21)00733-9
  39. Koes BW, 2007, BMJ-BRIT MED J, V334, P1313, DOI 10.1136/bmj.39223.428495.BE
  40. Krause P, 2005, NEUROL RES, V27, P412, DOI 10.1179/016164105X17224
  41. KUJIRAI T, 1993, J PHYSIOL-LONDON, V471, P501, DOI 10.1113/jphysiol.1993.sp019912
  42. Le Pera D, 2001, CLIN NEUROPHYSIOL, V112, P1633, DOI 10.1016/S1388-2457(01)00631-9
  43. Lefaucheur JP, 2006, NEUROLOGY, V67, P1568, DOI 10.1212/01.wnl.0000242731.10074.3c
  44. Loggia ML, 2013, PAIN, V154, P24, DOI 10.1016/j.pain.2012.07.029
  45. Lopes LCG, 2018, EUR J PAIN, V22, P72, DOI 10.1002/ejp.1091
  46. Luchtmann M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090816
  47. Maher C, 2017, LANCET, V389, P736, DOI 10.1016/S0140-6736(16)30970-9
  48. Mass-Alarie H, 2017, EXP BRAIN RES, V235, P647, DOI 10.1007/s00221-016-4834-y
  49. Masse-Alarie H, 2012, EXP BRAIN RES, V218, P99, DOI 10.1007/s00221-012-3008-9
  50. Mathieson S, 2017, NEW ENGL J MED, V376, P1111, DOI 10.1056/NEJMoa1614292
  51. McPhee ME, 2020, PAIN, V161, P464, DOI 10.1097/j.pain.0000000000001737
  52. MELZACK R, 1987, PAIN, V30, P191, DOI 10.1016/0304-3959(87)91074-8
  53. Mhalla A, 2010, PAIN, V149, P495, DOI 10.1016/j.pain.2010.03.009
  54. Moisset X, 2021, REV NEUROL-FRANCE, V177, P834, DOI 10.1016/j.neurol.2021.07.004
  55. Neziri AY, 2012, PAIN, V153, P2083, DOI 10.1016/j.pain.2012.06.025
  56. Ng SK, 2018, CLIN J PAIN, V34, P237, DOI 10.1097/AJP.0000000000000534
  57. Nusbaum L, 2001, BRAZ J MED BIOL RES, V34, P203, DOI 10.1590/S0100-879X2001000200007
  58. O'Neill CW, 2002, SPINE, V27, P2776, DOI 10.1097/00007632-200212150-00007
  59. Palsson TS, 2021, CLIN J PAIN, V37, P330, DOI 10.1097/AJP.0000000000000927
  60. Pituch K., 2015, APPL MULTIVARIATE ST, DOI 10.4324/9781315814919
  61. Rabey M, 2015, PAIN, V156, P1874, DOI 10.1097/j.pain.0000000000000244
  62. Raicher I, 2018, PAIN REP, V3, DOI 10.1097/PR9.0000000000000638
  63. Ropper AH, 2015, NEW ENGL J MED, V372, P1240, DOI 10.1056/NEJMra1410151
  64. ROSSINI PM, 1994, ELECTROEN CLIN NEURO, V91, P79, DOI 10.1016/0013-4694(94)90029-9
  65. Roth GA, 2018, LANCET, V392, P1736, DOI [10.1016/S0140-6736(18)32203-7, 10.1016/s0140-6736(18)32203-7]
  66. Schenk R, 2016, J MAN MANIP THER, V24, P21, DOI 10.1179/2042618614Y.0000000102
  67. Schmidt-Wilcke T, 2006, PAIN, V125, P89, DOI 10.1016/j.pain.2006.05.004
  68. Schober P, 2018, ANESTH ANALG, V126, P1763, DOI 10.1213/ANE.0000000000002864
  69. Sehn F, 2012, PAIN MED, V13, P1425, DOI 10.1111/j.1526-4637.2012.01492.x
  70. SIMONS DG, 1988, ARCH PHYS MED REHAB, V69, P207
  71. Strutton PH, 2005, J SPINAL DISORD TECH, V18, P420, DOI 10.1097/01.bsd.0000169063.84628.fe
  72. Sullivan MJL, 1995, PSYCHOL ASSESSMENT, V7, P524, DOI 10.1037/1040-3590.7.4.524
  73. Tate RL, 2010, COMPENDIUM TESTS SCA
  74. Thomson S, 2013, BRIT J PAIN, V7, P56, DOI 10.1177/2049463713479096
  75. Treede RD, 2019, PAIN, V160, P19, DOI 10.1097/j.pain.0000000000001384
  76. Tsao H, 2008, BRAIN, V131, P2161, DOI 10.1093/brain/awn154
  77. TURK DC, 1987, PAIN, V30, P177, DOI 10.1016/0304-3959(87)91073-6
  78. TYLER KL, 1983, NEUROLOGY, V33, P609, DOI 10.1212/WNL.33.5.609
  79. Valeriani M, 1999, CLIN NEUROPHYSIOL, V110, P1475, DOI 10.1016/S1388-2457(99)00075-9
  80. Valeriani M, 2001, EXP BRAIN RES, V139, P168, DOI 10.1007/s002210100753
  81. Valerio F, 2020, EUR J PAIN, V24, P1548, DOI 10.1002/ejp.1608
  82. Van Damme S, 2002, PAIN, V96, P319, DOI 10.1016/S0304-3959(01)00463-8
  83. von Elm E, 2014, INT J SURG, V12, P1495, DOI 10.1016/j.ijsu.2014.07.013
  84. Yu RJ, 2014, NEUROIMAGE-CLIN, V6, P100, DOI 10.1016/j.nicl.2014.08.019
  85. ZIGMOND AS, 1983, ACTA PSYCHIAT SCAND, V67, P361, DOI 10.1111/j.1600-0447.1983.tb09716.x