Loss of melanocytes in hypopigmented mycosis fungoides: a study of 18 patients

Carregando...
Imagem de Miniatura
Citações na Scopus
15
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY-BLACKWELL
Citação
JOURNAL OF CUTANEOUS PATHOLOGY, v.41, n.2, p.101-107, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundHypopigmentation in hypopigmented mycosis fungoides (MF) is thought to result from the action of CD8+ cells on melanocytes. Here, we investigated the immunophenotype and melanocytic markers in hypopigmented MF lesions. MethodsSpecimens of hypopigmented lesions and normal skin from 18 patients with hypopigmented MF and specimens of non-hypopigmented lesions from 8 patients with classic/conventional MF were subjected to neoplastic immunophenotyping and melanocyte immunostaining with Melan-A, tyrosinase, stem cell factor receptor (CD117) and microphthalmia-associated transcription factor (MiTF). ResultsThe CD8+ immunophenotype was more common in hypopigmented MF lesions (14/18) than in conventional MF lesions (1/8, p=0.0033). There was a main effect of specimen type (hypopigmented MF lesion, hypopigmented MF normal skin, conventional MF lesion) on the number of melanocytes stained with Melan-A (median number/mm basal membrane, 1.97 vs. 4.77 vs. 5.42, respectively, p=0.0046), tyrosinase (2.19 vs. 4.02 vs. 5.26, p=0.0114), CD117 (4.29 vs. 7.81 vs. 5.45, p=0.0064), and MiTF (2.75 vs. 4.43 vs. 4.98, p=0.005). ConclusionsThese results confirm previous findings of fewer melanocytes and CD117-positive melanocytes in hypopigmented MF and showed reduced MiTF identification, which is crucial for the function and survival of melanocytes. Thus cytotoxic CD8+ cell action may determine CD117/MiTF dysfunction, causing hypopigmentation.
Palavras-chave
CD8, cutaneous T-cell lymphoma, hypopigmentation, melanocytes, mycosis fungoides
Referências
  1. Ardigo M, 2003, J AM ACAD DERMATOL, V49, P264, DOI 10.1067/S0190-9622(03)00907-1
  2. Bouloc A, 2000, BRIT J DERMATOL, V143, P832, DOI 10.1046/j.1365-2133.2000.03851.x
  3. BREATHNACH SM, 1982, BRIT J DERMATOL, V106, P643, DOI 10.1111/j.1365-2133.1982.tb11678.x
  4. Castano E, 2013, J CUTAN PATHOL, V40, P924, DOI 10.1111/cup.12217
  5. Cheli Y, 2009, PIGM CELL MELANOMA R, V23, P27
  6. El Shabrawi-Caelen L, 2002, AM J SURG PATHOL, V26, P450
  7. El-Darouti MA, 2006, EUR J DERMATOL, V16, P17
  8. El Nasr HS, 2013, J EUR ACAD DERMATOL, V27, P103, DOI 10.1111/j.1468-3083.2011.04368.x
  9. GOLDBERG DJ, 1986, AM J DERMATOPATH, V8, P326, DOI 10.1097/00000372-198608000-00009
  10. Kim EJ, 2005, J CLIN INVEST, V115, P798, DOI 10.1172/JCI200524826
  11. Kitamura R, 2004, J PATHOL, V202, P463, DOI 10.1002/path.1538
  12. LAMBROZA E, 1995, J AM ACAD DERMATOL, V32, P987, DOI 10.1016/0190-9622(95)91337-8
  13. Ray P, 2008, CELL CYCLE, V7, P2826, DOI 10.4161/cc.7.18.6752
  14. Singh ZN, 2006, MODERN PATHOL, V19, P1255, DOI 10.1038/modpathol.3800644
  15. Stone ML, 2001, CUTIS, V67, P133
  16. VOLKENANDT M, 1993, BRIT J DERMATOL, V128, P423, DOI 10.1111/j.1365-2133.1993.tb00203.x
  17. Wain EM, 2003, CANCER, V98, P2282, DOI 10.1002/cncr.11780
  18. Willemze R, 2013, ANN ONCOL, V24, P149, DOI 10.1093/annonc/mdt242
  19. Yamaguchi Y, 2009, BIOFACTORS, V35, P193, DOI 10.1002/biof.29