Increased plasma lipids in triple-negative breast cancer and impairment in HDL functionality in advanced stages of tumors

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Citação
SCIENTIFIC REPORTS, v.13, n.1, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The association between plasma lipids and breast cancer (BC) has been extensively explored although results are still conflicting especially regarding the relationship with high-density lipoprotein cholesterol (HDLc) levels. HDL mediates cholesterol and oxysterol removal from cells limiting sterols necessary for tumor growth, inflammation, and metastasis and this may not be reflected by measuring HDLc. We addressed recently diagnosed, treatment-naive BC women (n = 163), classified according to molecular types of tumors and clinical stages of the disease, in comparison to control women (CTR; n = 150) regarding plasma lipids and lipoproteins, HDL functionality and composition in lipids, oxysterols, and apo A-I. HDL was isolated by plasma discontinuous density gradient ultracentrifugation. Lipids (total cholesterol, TC; triglycerides, TG; and phospholipids, PL) were determined by enzymatic assays, apo A-I by immunoturbidimetry, and oxysterols (27, 25, and 24-hydroxycholesterol), by gas chromatography coupled with mass spectrometry. HDL-mediated cell cholesterol removal was determined in macrophages previously overloaded with cholesterol and C-14-cholesterol. Lipid profile was similar between CTR and BC groups after adjustment per age. In the BC group, lower concentrations of TC (84%), TG (93%), PL (89%), and 27-hydroxicholesterol (61%) were observed in HDL, although the lipoprotein ability in removing cell cholesterol was similar to HDL from CRT. Triple-negative (TN) BC cases presented higher levels of TC, TG, apoB, and non-HDLc when compared to other molecular types. Impaired HDL functionality was observed in more advanced BC cases (stages III and IV), as cholesterol efflux was around 28% lower as compared to stages I and II. The altered lipid profile in TN cases may contribute to channeling lipids to tumor development in a hystotype with a more aggressive clinical history. Moreover, findings reinforce the dissociation between plasma levels of HDLc and HDL functionality in determining BC outcomes.
Palavras-chave
Referências
  1. Adorni MP, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10030574
  2. Allison KH, 2020, J CLIN ONCOL, V38, P1346, DOI 10.1200/JCO.19.02309
  3. BASU SK, 1976, P NATL ACAD SCI USA, V73, P3178, DOI 10.1073/pnas.73.9.3178
  4. Beloribi-Djefaflia S, 2016, ONCOGENESIS, V5, DOI 10.1038/oncsis.2015.49
  5. Campos AD, 2023, FRONT ONCOL, V13, DOI 10.3389/fonc.2023.1111094
  6. Cao WM, 2004, CANCER RES, V64, P1515, DOI 10.1158/0008-5472.CAN-03-0675
  7. Catasus L, 2011, HUM PATHOL, V42, P1581, DOI 10.1016/j.humpath.2011.01.011
  8. Cedo L, 2019, J CLIN MED, V8, DOI 10.3390/jcm8060853
  9. Chandler PD, 2016, AM J CLIN NUTR, V103, P1397, DOI 10.3945/ajcn.115.124321
  10. Corona G, 2021, CANCERS, V13, DOI 10.3390/cancers13225845
  11. Dai DA, 2016, J CANCER, V7, P1747, DOI 10.7150/jca.15776
  12. Dalenc F, 2017, J STEROID BIOCHEM, V169, P210, DOI 10.1016/j.jsbmb.2016.06.010
  13. Danilo C, 2013, BREAST CANCER RES, V15, DOI 10.1186/bcr3483
  14. de Gonzalo-Calvo D, 2015, BMC CANCER, V15, DOI 10.1186/s12885-015-1469-5
  15. DZELETOVIC S, 1995, ANAL BIOCHEM, V225, P73, DOI 10.1006/abio.1995.1110
  16. Eghlimi R, 2020, J PROTEOME RES, V19, P2367, DOI 10.1021/acs.jproteome.0c00038
  17. El Roz A, 2012, ANTICANCER RES, V32, P3007
  18. Fan Y, 2015, INT J BIOL MARKER, V30, pE200, DOI 10.5301/jbm.5000143
  19. Ferreira GS, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00644
  20. Flote VG, 2016, LIPIDS HEALTH DIS, V15, DOI 10.1186/s12944-016-0225-4
  21. Freeman MR, 2004, J CELL BIOCHEM, V91, P54, DOI 10.1002/jcb.10724
  22. FRIEDEWALD WT, 1972, CLIN CHEM, V18, P499
  23. Gallagher EJ, 2017, ONCOGENE, V36, P6462, DOI 10.1038/onc.2017.247
  24. Ghahremanfard Farahnaz, 2015, Oman Med J, V30, P353, DOI 10.5001/omj.2015.71
  25. Goldhirsch A, 2011, ANN ONCOL, V22, P1736, DOI 10.1093/annonc/mdr304
  26. Guan XF, 2019, LIPIDS HEALTH DIS, V18, DOI 10.1186/s12944-019-1075-7
  27. Gutierrez-Pajares JL, 2016, FRONT PHARMACOL, V7, DOI 10.3389/fphar.2016.00338
  28. Hamilton E, 2021, CANCER TREAT REV, V100, DOI 10.1016/j.ctrv.2021.102286
  29. Hammond MEH, 2010, ARCH PATHOL LAB MED, V134, P907, DOI [10.1200/JCO.2009.25.6529, 10.1200/JOP.777003, 10.1043/1543-2165-134.6.907]
  30. His M, 2017, CANCER CAUSE CONTROL, V28, P77, DOI 10.1007/s10552-016-0832-4
  31. Huang JF, 2016, CELL REP, V15, P336, DOI 10.1016/j.celrep.2016.03.020
  32. Huang XQ, 2016, BREAST CANCER RES TR, V155, P441, DOI 10.1007/s10549-016-3696-0
  33. Jung SM, 2020, J CLIN MED, V9, DOI 10.3390/jcm9092846
  34. Kontush A, 2020, TRENDS MOL MED, V26, P1086, DOI 10.1016/j.molmed.2020.07.005
  35. Kopecka J, 2020, INT J BIOCHEM CELL B, V129, DOI 10.1016/j.biocel.2020.105876
  36. Krycer JR, 2013, BBA-REV CANCER, V1835, P219, DOI 10.1016/j.bbcan.2013.01.002
  37. Kucharska-Newton AM, 2008, ANN EPIDEMIOL, V18, P671, DOI 10.1016/j.annepidem.2008.06.006
  38. Kumie G, 2020, BREAST CANCER-TARGET, V12, P279, DOI 10.2147/BCTT.S279291
  39. Li X, 2017, BREAST, V32, P1, DOI 10.1016/j.breast.2016.11.024
  40. Llaverias G, 2011, AM J PATHOL, V178, P402, DOI 10.1016/j.ajpath.2010.11.005
  41. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  42. Lu CW, 2017, CANCER LETT, V388, P130, DOI 10.1016/j.canlet.2016.11.033
  43. Mansourian M, 2016, J PHARM PHARM SCI, V19, P72, DOI 10.18433/J3202B
  44. Maubant Sylvie, 2018, Oncotarget, V9, P22586, DOI 10.18632/oncotarget.25187
  45. Mazzuferi G, 2021, LIPIDS HEALTH DIS, V20, DOI 10.1186/s12944-021-01562-1
  46. McDonnell DP, 2014, CANCER RES, V74, P4976, DOI 10.1158/0008-5472.CAN-14-1756
  47. Meaney S, 2002, J LIPID RES, V43, P2130, DOI 10.1194/jlr.M200293-JLR200
  48. Michalaki V, 2005, MOL CELL BIOCHEM, V268, P19, DOI 10.1007/s11010-005-2993-4
  49. Minanni CA, 2021, NUTRIENTS, V13, DOI 10.3390/nu13103633
  50. Munir MT, 2018, J STEROID BIOCHEM, V183, P1, DOI 10.1016/j.jsbmb.2018.05.001
  51. Murai T, 2015, BIOL CHEM, V396, P1, DOI 10.1515/hsz-2014-0194
  52. Nowake C, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06467-9
  53. Nunes VS, 2014, CLIN CHIM ACTA, V433, P169, DOI 10.1016/j.cca.2014.03.017
  54. Pan HL, 2019, ONCOL REP, V42, P1869, DOI 10.3892/or.2019.7279
  55. Pinto RS, 2022, DIABETES VASC DIS RE, V19, DOI 10.1177/14791641221085269
  56. Pussinen PJ, 2000, BIOCHEM J, V349, P559, DOI 10.1042/0264-6021:3490559
  57. Rohatgi A, 2021, CIRCULATION, V143, P2293, DOI 10.1161/CIRCULATIONAHA.120.044221
  58. Sag D, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7354
  59. Samadi S, 2019, J CELL BIOCHEM, V120, P5756, DOI 10.1002/jcb.27862
  60. Schimanski S, 2010, HORM METAB RES, V42, P102, DOI 10.1055/s-0029-1241859
  61. Sharma B, 2019, J STEROID BIOCHEM, V191, DOI 10.1016/j.jsbmb.2019.105377
  62. Smith B, 2012, CELL REP, V2, P580, DOI 10.1016/j.celrep.2012.08.011
  63. Sung H, 2021, CA-CANCER J CLIN, V71, P209, DOI 10.3322/caac.21660
  64. Undela K, 2012, BREAST CANCER RES TR, V135, P261, DOI 10.1007/s10549-012-2154-x
  65. Wang WQ, 2021, CANCER DRUG RESIST, V4, P485, DOI 10.20517/cdr.2020.107
  66. Wei YH, 2021, SCI PROGRESS-UK, V104, DOI 10.1177/00368504211028395
  67. Wu Q, 2013, CELL REP, V5, P637, DOI 10.1016/j.celrep.2013.10.006
  68. Yamauchi Y, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00509
  69. Yuan BY, 2016, TUMOR BIOL, V37, P3581, DOI 10.1007/s13277-015-4141-4