Impact of allele-level HLA matching on outcomes after double cord blood transplantation in adults with malignancies

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
VOLT, Fernanda
MOREIRA, Frederico
CONELISSEN, Jan
FURST, Sabine
DAGUINDAU, Etienne
SIRVENT, Anne
LATOUR, Regis Peffault de
RAFIL, Hanadi
Citação
BLOOD ADVANCES, v.7, n.13, p.3297-3306, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In single unrelated cord blood transplantation (UCBT), an increasing number of HLA allele mismatches (MM) has been associated with inferior overall survival (OS) and attributed to higher transplant-related mortality (TRM). Previous studies on the role of allele-level HLA matching after double UCBT (dUCBT) showed conflicting results. In this study, we report the impact of allele-level HLA matching on the outcomes of a large dUCBT cohort. We included 963 adults with hematologic malignancies, with available allele-level HLA matching at HLAA, -B, -C, and -DRB1, receiving dUCBT between 2006 to 2019. Assignment of donor-recipient HLA match was performed considering the unit with the highest disparity with the recipient. Three hundred ninety-two patients received dUCBT with 0 to 3 MM and 571 with >4 allele MM. For recipients of dUCBT with 0 to 3 MM, day-100 and 4-year TRM were 10% and 23%, respectively, compared with 16% and 36% for those with >4 MM. A higher degree of allele MM was also associated with the worse neutrophil recovery and lower incidence of relapse; no significant effect on graft-versus-host disease was observed. Patients receiving units with 0 to 3 MM had a 4-year OS of 54% compared with 43% for those receiving units with >4 MM. The inferior OS associated with higher HLA disparity was only partially mitigated by increased total nucleated cell doses. Our results confirm that allele-level HLA typing is a significant factor for OS after dUCBT, and units with >4 MM (<4/8 HLA-matched) should be avoided if possible.
Palavras-chave
Referências
  1. Armand P, 2014, BLOOD, V123, P3664, DOI 10.1182/blood-2014-01-552984
  2. Bacigalupo A, 2009, BIOL BLOOD MARROW TR, V15, P1628, DOI 10.1016/j.bbmt.2009.07.004
  3. Barker JN, 2020, BLOOD ADV, V4, P6064, DOI 10.1182/bloodadvances.2020003371
  4. Barker JN, 2017, BIOL BLOOD MARROW TR, V23, P882, DOI 10.1016/j.bbmt.2017.03.006
  5. Baron F, 2017, J HEMATOL ONCOL, V10, DOI 10.1186/s13045-017-0497-9
  6. Brunstein C, 2017, HAEMATOLOGICA, V102, P941, DOI 10.3324/haematol.2016.158584
  7. Brunstein CG, 2016, BIOL BLOOD MARROW TR, V22, P487, DOI 10.1016/j.bbmt.2015.09.025
  8. Contal C, 1999, COMPUT STAT DATA AN, V30, P253, DOI 10.1016/S0167-9473(98)00096-6
  9. Cornelissen Jan J, 2017, Stem Cell Investig, V4, P47, DOI 10.21037/sci.2017.05.09
  10. Dahi PB, 2014, BONE MARROW TRANSPL, V49, P1184, DOI 10.1038/bmt.2014.135
  11. Dehn J, 2019, BLOOD, V132, P924, DOI 10.1182/blood.2019001212
  12. Delaney M, 2009, TRANSFUSION, V49, P995, DOI 10.1111/j.1537-2995.2008.02077.x
  13. Eapen M, 2017, LANCET HAEMATOL, V4, pE325, DOI 10.1016/S2352-3026(17)30104-7
  14. Eapen M, 2014, BLOOD, V123, P133, DOI 10.1182/blood-2013-05-506253
  15. Fatobene G, 2020, BLOOD ADV, V4, P6327, DOI 10.1182/bloodadvances.2020002258
  16. Fatobene G, 2020, J CLIN ONCOL, V38, P1518, DOI 10.1200/JCO.19.02408
  17. Fine JP, 1999, J AM STAT ASSOC, V94, P496, DOI 10.2307/2670170
  18. Fuchs EJ, 2022, BLOOD, V139, P1452, DOI 10.1182/blood.2021013443
  19. Fuchs EJ, 2021, BLOOD, V137, P420, DOI 10.1182/blood.2020007535
  20. Gluckman E, 2004, EXP HEMATOL, V32, P397, DOI 10.1016/j.exphem.2004.01.002
  21. Horwitz ME, 2021, BLOOD, V138, P1429, DOI 10.1182/blood.2021011719
  22. Iemura T, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-78259-5
  23. Jagasia MH, 2015, BIOL BLOOD MARROW TR, V21, P389, DOI 10.1016/j.bbmt.2014.12.001
  24. Kalbfleisch J.D., 1980, STAT ANAL FAILURE TI
  25. Kindwall-Keller TL, 2012, BONE MARROW TRANSPL, V47, P924, DOI 10.1038/bmt.2011.195
  26. Lamers CHJ, 2016, BLOOD, V128, P2165, DOI 10.1182/blood-2016-06-718619
  27. Lau C, 2019, BIOL BLOOD MARROW TR, V25, pS94, DOI 10.1016/j.bbmt.2018.12.182
  28. Lee SJ, 2007, BLOOD, V110, P4576, DOI 10.1182/blood-2007-06-097386
  29. Mallhi KK, 2017, BIOL BLOOD MARROW TR, V23, P119, DOI 10.1016/j.bbmt.2016.10.019
  30. Michel G, 2016, BLOOD, V127, P3450, DOI 10.1182/blood-2016-01-694349
  31. Milano F, 2020, BLOOD ADV, V4, P3302, DOI 10.1182/bloodadvances.2020002222
  32. Milano F, 2017, BLOOD, V130, P1480, DOI 10.1182/blood-2017-06-788513
  33. Morishima Y, 2015, BLOOD, V125, P1189, DOI 10.1182/blood-2014-10-604785
  34. Olson AL, 2021, TRANSPL CELL THER, V27, P359, DOI 10.1016/j.jtct.2021.01.024
  35. Oran B, 2015, HAEMATOLOGICA, V100, P1361, DOI 10.3324/haematol.2015.127787
  36. Politikos I, 2022, BLOOD ADV, V6, P6291, DOI 10.1182/bloodadvances.2022008047
  37. Purtill D, 2015, BIOL BLOOD MARROW TR, V21, P1981, DOI 10.1016/j.bbmt.2015.07.015
  38. Purtill D, 2014, BLOOD, V124, P2905, DOI 10.1182/blood-2014-03-566216
  39. Rowlings PA, 1997, BRIT J HAEMATOL, V97, P855, DOI 10.1046/j.1365-2141.1997.1112925.x
  40. Ruggeri A, 2014, LEUKEMIA, V28, P779, DOI 10.1038/leu.2013.259
  41. Ruggeri A, 2019, HEMATOL-AM SOC HEMAT, P522, DOI 10.1182/hematology.2019000056
  42. SAS Institute Inc, 2018, SAS STAT 151 US GUID
  43. Tozatto-Maio K, 2018, BIOL BLOOD MARROW TR, V24, P1657, DOI 10.1016/j.bbmt.2018.02.014
  44. Verneris MR, 2009, BLOOD, V114, P4293, DOI 10.1182/blood-2009-05-220525
  45. Wagner JE, 2014, NEW ENGL J MED, V371, P1685, DOI 10.1056/NEJMoa1405584
  46. Watkins B, 2021, J CLIN ONCOL, V39, P1865, DOI 10.1200/JCO.20.01086
  47. Yabe T, 2018, LEUKEMIA, V32, P168, DOI 10.1038/leu.2017.202
  48. Yokoyama H, 2020, BIOL BLOOD MARROW TR, V26, P519, DOI 10.1016/j.bbmt.2019.11.001