Central Nervous System Anesthesia: Asleep Approach

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
bookPart
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER INTERNATIONAL PUBLISHING
Citação
Mizumoto, N.. Central Nervous System Anesthesia: Asleep Approach. In: . Intraoperative Monitoring: Neurophysiology and Surgical Approaches: SPRINGER INTERNATIONAL PUBLISHING, 2022. p.111-125.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The knowledge of the mechanisms at play on the physiology of the central nervous system (CNS) is crucial for the anesthesia during surgical procedures in the encephalus and the medulla. Anesthesia may modify the CNS by acting on: a) extrinsic conditions such as changes in CO2 partial pressure, O2 partial pressure, systemic arterial pressure, body temperature, and intravascular blood volume replacement; and b) intrinsic conditions such as increased or decreased cerebral metabolic rates (CMRO2). These changes can increase or decrease cerebral blood flow (CBF), cerebral blood volume (CBV), and intracranial pressure (ICP), modifying cerebral perfusion pressure (CPP). During the surgical procedure, when the CNS is monitored to reduce aggression, it is essential to consider the effects of anesthesia since physiological changes and the effects of anesthetics can interfere with this monitoring, making it difficult to detect signs of possible mechanical aggressions due to the surgical procedure on the CNS. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.
Palavras-chave
Anesthesia, Anesthetic drugs, Cerebral blood flow, CMRO<sub>2</sub>, CNS monitoring
Referências
  1. Shapiro H.M., Intracranial hypertension: Therapeutics and anesthetics, Anesthesiology, 43, pp. 445-471, (1975)
  2. Marmarou A., Et al., Contribution of CSF on vascular factors to the elevation of ICP in severely head-injured patients, J Neurosurg, 66, pp. 883-890, (1987)
  3. Frackowiak R.S., Et al., Regional cerebral oxygen utilization and blood flow in normal man using oxygen-15 and positron emission tomography, Acta Neurol Scand, 62, pp. 336-344, (1980)
  4. Siesjo B.K., Cerebral circulation and metabolism, J Neurosurg, 60, pp. 883-908, (1984)
  5. Sokoloff L., Circulation and energy metabolism of the brain, pp. 565-591, (1989)
  6. Plum F., Et al., Cerebral metabolic and circulatory responses to induced convulsions in animals, Arch Neurol, 18, pp. 1-13, (1968)
  7. Reivich M., Et al., Reactivity of cerebral vessel to CO2 in the newborn rhesus monkey, Eur Neurol, 6, pp. 132-136, (1971)
  8. Reivich M., Arterial PCO2 and cerebral hemodynamics, Am J Phys, 1, pp. 25-35, (1964)
  9. Lassen N., The luxury perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain, Lancet, 2, pp. 1113-1115, (1967)
  10. Harper A.M., Autoregulation of cerebral blood flow: Influence of arterial blood pressure on the blood flow through the cerebral cortex, J Neurol Neurosurg Psychiatry, 29, pp. 398-403, (1966)
  11. McHenry J.L.C., Et al., Cerebral autoregulation in man, Stroke, 5, pp. 695-705, (1974)
  12. Cucchiara R.F., Et al., The effects of isofluran on canine cerebral metabolism and cerebral flow, Anesthesiology, 40, pp. 571-574, (1974)
  13. Theye R.A., Michenfelder J.D., The effect of halothane on canine cerebral metabolism, Anesthesiology, 29, pp. 113-118, (1968)
  14. Takahashi H., Sevoflurane does not increase intracranial pressure in hyperventilated dogs, Br J Anaesth, 71, pp. 551-555, (1993)
  15. Lebowitz M.H., Et al., Enflurane-induced central nervous system excitation and its relation to carbon dioxide tension, Anesth Analg, 51, pp. 355-363, (1972)
  16. Baughman V.L., Et al., Cerebrovascular metabolic effects of N2O in unrestrained rats, Anesthesiology, 73, pp. 269-272, (1990)
  17. Pelligrino D.A., Et al., Nitrous oxide markedly increases cerebral cortical metabolic rate and blood flow in the goat, Anesthesiology, 60, pp. 405-412, (1984)
  18. Ferrer-Allado, Et al., Ketamine induced electro-convulsive phenomena in the human limbic and thalamic regions, Anesthesiology, 38, pp. 333-344, (1973)
  19. Rosen I., Hagerdale M., Electroencephalographic study of children during ketamine anesthesia, Acta Anesthesiol Scand, 20, pp. 32-39, (1976)
  20. Kassell N.F., Et al., Influence of changes in arterial pCO2 on cerebral blood flow and metabolism during high-dose barbiturate therapy in dogs, J Neurosurg, 54, pp. 615-619, (1981)
  21. Michenfelder J.R., The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in dogs, Anesthesiology, 41, pp. 231-236, (1974)
  22. Shapiro H.M., Et al., Rapid intraoperative reduction of intracranial pressure with tiopentone, Br J Anaesth, 5, pp. 798-803, (1998)
  23. Wyler A.R., Et al., Methoexital activation of the epileptogenic foci during acute electrocorticography, Epilepsia, 28, pp. 490-494, (1987)
  24. Milde L., Et al., Cerebral functional metabolic, and haemodinamic effects of etomidate in dogs, Anesthesiology, 63, pp. 371-417, (1985)
  25. Davis D.W., Et al., Regional brain glucose utilization in rats during etomidate anesthesia, Anesthesiology, 64, pp. 751-757, (1986)
  26. Newberg Milde L., Et al., Cerebral functional metabolic, and haemodinamic effects of etomidate in dogs, Anesthesiology, 63, pp. 371-417, (1985)
  27. Ebrahim K.Y., Et al., Effect of etomidate on electroencefalogram of patients with epilepsy, Anesth Analg, 65, pp. 1004-1006, (1986)
  28. Gancher S., Et al., Activation of epileptogenic activity by etomidate, Anesthesiology, 61, pp. 616-618, (1984)
  29. Yeoman P., Et al., Etomidate infusion for the control of refractory status epilepticus, Intens Care Med, 15, pp. 255-259, (1989)
  30. Zanatta P., Bosco E., Comin A., Mazzarolo A.P., Di Pasquale P., Forti A., Longatti P., Polesel E., Stecker M., Sorbara C., Effect of mild hypothermic cardiopulmonary bypass on the amplitude of somatosensory evoked potentials, J Neurosurg Anesthesiol, 26, 2, pp. 161-166, (2014)
  31. Madhok J., Wu D., Xiong W., Geocadin R.G., Jia X., Hypothermia amplifies somatosensory evoked potentials in uninjured rats, J Neurosurg Anesthesiol, 24, 3, pp. 197-202, (2012)
  32. Fleischer J.E., Et al., Cerebral effects of high-dose midazolam and subsequent reversal with Ro 15-1788 in dogs, Anesthesiology, 69, pp. 145-147, (1988)
  33. Nugent M., Et al., Cerebral metabolic, vascular and protective effects of midazolam maleate: Comparison of diazepam, Anesthesiology, 56, pp. 172-176, (1982)
  34. Van Hemelrijck J., Et al., Effect of propofol on cerebral circulation and autoregulation in the baboon, Anesth Analg, 71, pp. 49-54, (1990)
  35. Artru A.A., Shapira Y., e Bowdle, Electroencephalogram, cerebral metabolic, and vascular responses to propofol anesthesia in dogs, J Neurosurg Anesthesiol, 4, pp. 99-109, (1992)
  36. Karsli C., Et al., Propofol decreases cerebral blood flow velocity in anesthetized children, Can J Anaesth, 49, pp. 830-834, (2002)
  37. Pinaud M., Et al., Effects of propofol on cerebral hemodynamics and metabolism in patients with brain trauma, Anesthesiology, 73, pp. 404-409, (1990)
  38. Cuebras X., Et al., Propofol incresead cerebral perfusion as compared with isoflurane during a cerebral angiography in a child with moyamoya disease, J Neurosurg Anesthesiol, 1, pp. 50-54, (2003)
  39. Smith J.H., Et al., Cerebral blood flow velocity increases when propofol is changed to desflurane, but not when isoflurane is changed to desflurane in children, Acta Anaest Scan, 49, (2005)
  40. Jobes D.R., Et al., Cerebral blood flow and metabolism during morphine-nitrous oxide anesthesia in man, Anesthesiology, 47, pp. 16-18, (1977)
  41. Takeshita K., Et al., The effects of ketamine on cerebral circulation and metabolism in man, Anesthesiology, 1, pp. 69-75, (1972)
  42. Shapiro H., Et al., Ketamine anaesthesia in patients with intracranial pathology, Br J Anaesth, 44, pp. 1200-1204, (1972)
  43. Cottrell J.E., Et al., Intracranial and hemodynamics changes after succinilcholine administration in cats, Anaest Analg, 62, pp. 1006-1009, (1983)
  44. Lanier W.L., Et al., Cerebral stimulation succinilcholine in dogs, Anesthesiology, 64, pp. 551-559, (1986)
  45. Lanier W.L., Et al., Cerebral blood flow and afferent muscle activity following the succinilcholine in dogs, Anesthesiol Rev, 14, pp. 60-61, (1987)
  46. Yamamoto Y., Kawaguchi M., Hayashi H., Horiuchi T., Inoue S., Nakase H., Sakaki T., Furuya H., The effects of the neuromuscular blockade levels on amplitudes of post tetanic motor-evoked potentials and movement in response to transcranial stimulation in patients receiving propofol and fentanyl anesthesia, Anesth Analg, 106, 3, pp. 930-934, (2008)
  47. Voss L.J., Sleigh J.W., Barnard J.P., Kirsch H.E., The howling cortex: Seizures and general anesthetic drugs, Anesth Analg, 107, pp. 1689-1703, (2008)
  48. Chui J., Manninen P., Valiante T., Venkatraghavan L., The anesthetic considerations of intraoperative electrocorticography during epilepsy surgery, Anesth Analg(Review), 117, pp. 479-486, (2013)
  49. Musella L., Wilder B.J., Schmidt R.P., Electroencephalographic activation with intravenous methohexital in psychomotor epilepsy, Neurology, 21, pp. 594-602, (1971)
  50. Hufnagel A., Burr W., Elger C.E., Nadstawek J., Hefner G., Localization of the epileptic focus during methohexital-induced anesthesia, Epilepsia, 33, pp. 271-284, (1992)
  51. Gancher S., Et al., Activation of epileptogenic activity by etomidate, Anesthesiology, 61, pp. 616-618, (1984)
  52. Shafer S.L., Stanski D.R., Defining depth of anesthesia, Handb Exp Pharmacol, 182, pp. 409-423, (2008)
  53. Bischoff P., Schneider G., Kochs E., Anesthetics drug pharmacodynamics, Handb Exp Pharmacol, 182, pp. 379-408, (2008)
  54. Rampill I.J., A primer for EEG signal processing in anesthesia, Anesthesiology, 89, pp. 980-1002, (1998)
  55. Kiersey D.K., Bickford R.G., Faulconer A., Electro-encephalographic patterns produced by thiopental sodium during surgical operations
  56. description and classification, Br J Anaesth, 23, pp. 141-152, (1951)
  57. Nunes R.P., Chaves I.M.M., Alencar J.C.G., Franco S.B., Oliveira Y.G.B.R., Menezes D.G.A., Bispectral index and other processed parameters of electroencephalogram: An update, Rev Bras Anestesiol, 62, 1, pp. 105-117, (2012)
  58. Rosow C., Manberg P.J., Bispectral index monitoring, Anesthesiol Clin North Am, 19, 4, pp. 947-966, (2001)
  59. Johansen J.W., Sebel P.S., Sigl J.C., Clinical impact of hypnotic-titration guidelines based on EEG bispectral index (BIS) monitoring during routine anesthetic care, J Clin Anesth, 12, 6, pp. 433-443, (2000)
  60. Paventi S., Santevecchi A., Metta E., Annetta M.G., Perilli V., Sollazzi L., Ranieri R., Bispectral index monitoring in sevoflurane and remifentanil anesthesia: Analysis of drugs management and immediate recovery, Minerva Anestesiol, 67, 6, pp. 435-439, (2001)
  61. Wang D., Song Z., Zhang C., Chen P., Bispectral index monitoring of the clinical effects of propofol closed-loop target-controlled infusion: Systematic review and meta-analysis of randomized controlled trials, Medicine (Baltimore), 100, 4, (2021)
  62. Lewis S.R., Pritchard M.W., Fawcett L.J., Punjasawadwong Y., Bispectral index for improving intraoperative awareness and early postoperative recovery in adults, Cochrane Anaesthesia Group, Cochrane Database Syst Rev, 2019, 9, (2019)
  63. Taniguchi M., Nadstawek J., Pechstein U., Schramm J., Total intravenous anesthesia for improvement of intraoperative monitoring of somatosensory evoked potentials during aneurysm surgery, Neurosurgery, 31, 5, pp. 891-897, (1992)
  64. Struys M.M.R.F., Vereecke H., Moerman A., Erik W., Verhaeghen D., De Neve N., Dumortier F.J.E., Mortier E.P., Ability of the bispectral index, autoregressive modelling with exogenous input-derived auditory evoked potentials and predicted propofol concentrations to measure patient responsiveness during anesthesia with propofol and remifentanil, Anesthesiology, 99, 4, pp. 802-812, (2003)
  65. Scheufler K.M., Zentner J., Total intravenous anesthesia for intraoperative monitoring of the motor pathways: An integral view combining clinical and experimental data, J Neurosurg, 96, 3, pp. 571-579, (2002)
  66. Elbakry A.E., Ibrahim E., Propofol-dexmedetomidine versus propofol-remifentanil conscious sedation for awake craniotomy during epilepsy surgery, Minerva Anestesiol, 83, 12, pp. 1248-1254, (2017)
  67. Manninen P.H., Balki M., Lukitto K., Bernstein M., Patient satisfaction with awake craniotomy for tumor surgery: A comparison of remifentanil and fentanyl in conjunction with propofol, Anesth Analg, 102, 1, pp. 237-242, (2006)
  68. Berkenstadt H., Perel A., Hadani M., Unofrievich I., Ram Z., Monitored anesthesia care using remifentanil and propofol for awake craniotomy, J Neurosurg Anesthesiol, 13, 3, pp. 246-249, (2001)
  69. Sridharan K., Sivaramakrishnan G., Comparison of fentanyl, remifentanil, Sufentanil and Alfentanil in combination with propofol for general anesthesia: A systematic review and meta-analysis of randomized controlled trials, Curr Clin Pharmacol, 14, 2, pp. 116-124, (2019)
  70. Kochs E., Treede R.D., Schulteam Esch J., Increase in somatosensory evoked potentials during anesthesia induction with etomidate, Anaesthesist, 35, 6, pp. 359-364, (1986)
  71. Renna M., Venturi R., Bispectral index and anaesthesia in the elderly, Minerva Anestesiol, 66, 5, pp. 398-402, (2000)
  72. Gajraj R.J., Doi M., Mantzaridis H., Kenny G.N., Comparison of bispectral EEG analysis and auditory evoked potentials for monitoring depth of anaesthesia during propofol anaesthesia, Br J Anaesth, 82, 5, pp. 672-678, (1999)
  73. Litvan H., Jensen E.W., Maestre M.L., Galan J., Campos J.M., Fernandez J.A., Caminal P., Landeira J.M., Comparison of an auditory evoked potentials index and a bispectral index versus clinical signs for determining the depth of anesthesia produced by propofol or sevoflurane, Rev Esp Anestesiol Reanim, 47, 10, pp. 447-457, (2000)
  74. White P.F., Ma H., Tang J., Wender R.H., Sloninsky A., Kariger R.M., Does the use of electroencephalographic bispectral index or auditory evoked potential index monitoring facilitate recovery after Desflurane anesthesia in the ambulatory setting?, Anesthesiology, 100, 4, pp. 811-817, (2004)
  75. Links Sloan T.B., Heyer E.J., Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord, J Clin Neurophysiol, 19, 5, pp. 430-443, (2002)
  76. Kawaguchi M., Inoue S., Kakimoto M., Kitaguchi K., Furuya H., Morimoto T., Sakaki T., The effect of sevoflurane on myogenic motor-evoked potentials induced by single and paired transcranial electrical stimulation of the motor cortex during nitrous oxide/ketamine/fentanyl anesthesia, J Neurosurg Anesthesiol, 10, 3, pp. 131-136, (1998)
  77. Modica P.A., Tempelhoff R., White P.F., Pro-and anticonvulsant effects of anesthetics (part I), Anesth Analg, 70, pp. 303-315, (1990)
  78. Sato Y., Sato K., Shamoto H., Kato M., Yoshimoto T., Effect of nitrous oxide on spike activity during epilepsy surgery, Acta Neurochir, 143, pp. 1213-1215, (2001)
  79. Kurita N., Kawaguchi M., Hoshida T., Nakase H., Sakaki T., Furuya H., Effects of nitrous oxide on spike activity on electro-corticogram under sevoflurane anesthesia in epileptic patients, J Neurosurg Anesthesiol, 17, pp. 199-202, (2005)
  80. Chen Z., The effects of isoflurane and propofol on intraoperative neurophysiological monitoring during spinal surgery, J Clin Monit Comput, 18, 4, pp. 303-308, (2004)
  81. Fisher R.S., van Emde B.W., Blume W., Elger C., Genton P., Lee P., Engel J., Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE), Epilepsia, 46, pp. 470-472, (2005)
  82. Zhao X., Wang X., Anesthesia-induced epilepsy causes and treatment, Expert Rev Neurother, 14, 9, pp. 1099-1113, (2014)
  83. Kumar A., Sharma S., Complex Partial Seizure, (2021)
  84. Kumar A., Maini K., Arya K., Sharma S., Simple Partial Seizure, (2021)
  85. Flemming D.C., Fitzpatrick J., Fariello R.G., Duff T., Hellman D., Hoff B.H., Diagnostic activation of epileptogenic foci by enflurane, Anesthesiology, 52, pp. 431-433, (1980)
  86. Musella L., Wilder B.J., Schmidt R.P., Electroencephalographic activation with intravenous methohexital in psychomotor epilepsy, Neurology, 21, pp. 594-602, (1971)
  87. Hufnagel A., Burr W., Elger C.E., Nadstawek J., Hefner G., Localization of the epileptic focus during methohexital-induced anesthesia, Epilepsia, 33, pp. 271-284, (1992)
  88. Takebayashi S., Kamiyam A.H., Takizawa K., Kobayashi T., Saitoh N., The significance of intraoperative monitoring of muscle motor evoked potentials during unruptured large and giant cerebral aneurysm surgery, Neurol Med Chir (Tokyo), 54, (2014)
  89. Zanatta P., Bosco E., Comin A., Mazzarolo A.P., Di Pasquale P., Forti A., Longatti P., Polesel E., Stecker M., Sorbara C., Effect of mild hypothermic cardiopulmonary bypass on the amplitude of somatosensory evoked potentials, J Neurosurg Anesthesiol, 26, 2, pp. 161-166, (2014)
  90. Hare G.M., Tsui A.K., McLaren A.T., Ragoonanan T.E., Yu J., Mazer C.D., Anemia and cerebral outcomes: Many questions, fewer answers, Anesth Analg, 107, 4, pp. 1356-1370, (2008)
  91. Floyd T.F., McGarvey M., Ochroch E.A., Cheung A.T., Augoustides J.A., Bavaria J.E., Acker M.A., Pochettino A., Detre J.A., Perioperative changes in cerebral blood flow after cardiac surgery: Influence of anemia and aging, Ann Thorac Surg, 76, 6, pp. 2037-2042, (2003)
  92. Myles P.S., Bispectral index monitoring in ischemic-hypoxic brain injury, J Extra Corpor Technol, 41, 1, pp. P15-P19, (2009)
  93. Villacorta J., Kerbaul F., Collart F., Guidon C., Bonnet M., Guillen J.C., Gouin F., Perioperative cerebral ischaemia in cardiac surgery and BIS, Anaesth Intensive Care, 33, 4, pp. 514-517, (2005)
  94. Myles P.S., Bispectral index monitoring in ischemic-hypoxic brain injury, J Extra Corpor Technol, 41, 1, pp. P15-P19, (2009)
  95. Villacorta J., Kerbaul F., Collart F., Guidon C., Bonnet M., Guillen J.C., Gouin F., Perioperative cerebral ischaemia in cardiac surgery and BIS, Anaesth Intensive Care, 33, 4, pp. 514-517, (2005)