Development and adaptations of the Graded Prognostic Assessment (GPA) scale: a systematic review

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
RIBEIRO, Luana Marques
BOMTEMPO, Fernanda Ferreira
ROCHA, Rebeka Bustamante
Citação
CLINICAL & EXPERIMENTAL METASTASIS, v.40, n.6, p.445-463, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The Graded Prognostic Assessment (GPA) score has the best accuracy among prognostic scales for patients with brain metastases (BM). A wide range of GPA-derived scales have been established to different types of primary tumor BM. However, there is a high variability between them, and their characteristics have not been described altogether yet. We aim to summarize the features of the existent GPA-derived scales and to compare their predictor factors and their uses in clinical setting. Medline was searched from inception until January 2023 to identify studies related to the development, update, or validation of GPA. The initial search yielded 1,083 results. 16 original studies and 16 validation studies were included, comprising a total of 33,348 patients. 13 different scales were assessed, including: GPA, Diagnosis-Specific GPA, Extracranial Score, Lung-molGPA, Updated Renal GPA, Updated Gastrointestinal GPA, Modified Breast GPA, Integrated Melanoma GPA, Melanoma Mol GPA, Sarcoma GPA, Hepatocellular Carcinoma GPA, Colorectal Cancer GPA, and Uterine Cancer GPA. The most prevalent prognostic predictors were age, Karnofsky Performance Status, number of BM, and presence or absence of extracranial metastases. Treatment modalities consisted of whole brain radiation therapy, stereotactic radiosurgery, surgery, cranial radiotherapy, gamma knife radiosurgery, and BRAF inhibitor therapy. Median survival rates with no treatment and with a specific treatment ranged from 6.1 weeks to 33 months and from 3.1 to 21 months, respectively. Original GPA and GPA-derived scales are valid prognostic tools, but with heterogeneous survival results when compared to each other. More studies are needed to improve scientific evidence of these scales.
Palavras-chave
Graded Prognostic Assessment, Prognostic scale, Prognostic index, Brain metastases
Referências
  1. Ahluwalia M., 2021, NEURO-ONCOL ADV, V3, P1
  2. Ahluwalia M, 2021, NEURO-ONCOL ADV, V3, DOI 10.1093/noajnl/vdaa152
  3. Chen KY, 2020, ONCOTARGETS THER, V13, P8837, DOI 10.2147/OTT.S255478
  4. Dalmasso C, 2020, MELANOMA RES, V30, P472, DOI 10.1097/CMR.0000000000000670
  5. Deguchi S, 2020, INT J CLIN ONCOL, V25, P1995, DOI 10.1007/s10147-020-01740-8
  6. Gaspar L, 1997, INT J RADIAT ONCOL, V37, P745, DOI 10.1016/S0360-3016(96)00619-0
  7. Griguolo G, 2018, BREAST, V37, P36, DOI 10.1016/j.breast.2017.10.006
  8. Hayashi N, 2017, BMC CANCER, V17, DOI 10.1186/s12885-017-3358-6
  9. Kim BH, 2018, INT J CLIN ONCOL, V23, P1112, DOI 10.1007/s10147-018-1329-9
  10. Lewitzki V, 2019, CLIN TRANSL RAD ONCO, V16, P15, DOI 10.1016/j.ctro.2019.02.005
  11. Li J, 2021, ONCOTARGETS THER, V14, P1623, DOI 10.2147/OTT.S288928
  12. Li J, 2011, INT J RADIAT ONCOL, V81, P623, DOI 10.1016/j.ijrobp.2010.06.012
  13. Likhacheva A, 2012, J NEUROSURG, V117, P38, DOI 10.3171/2012.3.GKS1289
  14. Lim S, 2014, J NEURO-ONCOL, V120, P199, DOI 10.1007/s11060-014-1546-7
  15. Nieder C, 2014, CLIN ONCOL-UK, V26, P447, DOI 10.1016/j.clon.2014.03.006
  16. Nieder C, 2008, ANTICANCER RES, V28, P3015
  17. Nieder C, 2020, ONCOL RES TREAT, V43, P221, DOI 10.1159/000506954
  18. Nieder C, 2020, RADIAT ONCOL, V15, DOI 10.1186/s13014-020-1484-9
  19. Nieder Carsten, 2018, J Clin Med Res, V10, P178, DOI 10.14740/jocmr3248w
  20. Nieder C, 2017, RADIAT ONCOL, V12, DOI 10.1186/s13014-017-0844-6
  21. Nieder C, 2012, MED SCI MONITOR, V18, pCR450, DOI 10.12659/MSM.883213
  22. Page MJ, 2021, PLOS MED, V18, DOI [10.1371/journal.pmed.1003583, 10.1136/bmj.n71]
  23. Patrikidou A, 2020, BMC CANCER, V20, DOI 10.1186/s12885-020-6548-6
  24. Serizawa T, 2014, J NEUROSURG, V121, P35, DOI 10.3171/2014.7.GKS14980
  25. Sperduto PW, 2008, INT J RADIAT ONCOL, V70, P510, DOI 10.1016/j.ijrobp.2007.06.074
  26. Sperduto PW, 2020, J CLIN ONCOL, V38, P3773, DOI 10.1200/JCO.20.01255
  27. Sperduto PW, 2019, CLIN TRANSL RAD ONCO, V18, P39, DOI 10.1016/j.ctro.2019.06.007
  28. Sperduto PW, 2018, NEURO-ONCOLOGY, V20, P1652, DOI 10.1093/neuonc/noy099
  29. Sperduto PW, 2017, INT J RADIAT ONCOL, V99, P812, DOI 10.1016/j.ijrobp.2017.06.2454
  30. Sperduto PW, 2017, JAMA ONCOL, V3, P827, DOI 10.1001/jamaoncol.2016.3834
  31. Sperduto PW, 2016, INT J RADIAT ONCOL, V96, P406, DOI 10.1016/j.ijrobp.2016.06.006
  32. Sperduto PW, 2012, J CLIN ONCOL, V30, P419, DOI 10.1200/JCO.2011.38.0527
  33. Sperduto PW, 2010, INT J RADIAT ONCOL, V77, P655, DOI 10.1016/j.ijrobp.2009.08.025
  34. Subbiah IM, 2015, J CLIN ONCOL, V33, P2239, DOI 10.1200/JCO.2014.58.8517
  35. Tai Cheng-Hung, 2018, CNS Oncol, V7, P25, DOI 10.2217/cns-2017-0023
  36. van Ruitenbeek NJ, 2021, J NEURO-ONCOL, V153, P527, DOI 10.1007/s11060-021-03793-9
  37. Venur VA, 2015, CHIN CLIN ONCOL, V4, DOI 10.3978/j.issn.2304-3865.2015.06.01
  38. Weltman E, 2000, INT J RADIAT ONCOL, V46, P1155, DOI 10.1016/S0360-3016(99)00549-0
  39. Woody NM, 2018, CLIN LUNG CANCER, V19, pE141, DOI 10.1016/j.cllc.2017.06.011
  40. Yamamoto M, 2013, J NEURO-ONCOL, V111, P327, DOI 10.1007/s11060-012-1019-9
  41. Yamamoto M, 2012, INT J RADIAT ONCOL, V83, P1399, DOI 10.1016/j.ijrobp.2011.10.018